Loading…

Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise

We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We prov...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-06
Main Authors: Tonaki, Yozo, Kaino, Yusuke, Uchida, Masayuki
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tonaki, Yozo
Kaino, Yusuke
Uchida, Masayuki
description We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2679479514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679479514</sourcerecordid><originalsourceid>FETCH-proquest_journals_26794795143</originalsourceid><addsrcrecordid>eNqNjksKwkAQRAdBMKh3aHAdiJPEmLUfXAq6lzZ2sMN84vSI13cWHsBVLeo9qiYq02W5zreV1jO1FBmKotCbRtd1mSk8Y0BLkQKQRLYY2TvofQAEw44wwJiIuzfcweW8P4D1DzLADuLHg4zYETzYkpMkCnw4PpMqFo0B51looaY9GqHlL-dqdTxcd6d8DP71TqO3wb-DS9UtvWqrpq3XVfkf9QUEUkTn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679479514</pqid></control><display><type>article</type><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><source>Publicly Available Content Database</source><creator>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</creator><creatorcontrib>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</creatorcontrib><description>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ornstein-Uhlenbeck process ; Parameter estimation ; Partial differential equations ; Statistical inference</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2679479514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Tonaki, Yozo</creatorcontrib><creatorcontrib>Kaino, Yusuke</creatorcontrib><creatorcontrib>Uchida, Masayuki</creatorcontrib><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><title>arXiv.org</title><description>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</description><subject>Ornstein-Uhlenbeck process</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjksKwkAQRAdBMKh3aHAdiJPEmLUfXAq6lzZ2sMN84vSI13cWHsBVLeo9qiYq02W5zreV1jO1FBmKotCbRtd1mSk8Y0BLkQKQRLYY2TvofQAEw44wwJiIuzfcweW8P4D1DzLADuLHg4zYETzYkpMkCnw4PpMqFo0B51looaY9GqHlL-dqdTxcd6d8DP71TqO3wb-DS9UtvWqrpq3XVfkf9QUEUkTn</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Tonaki, Yozo</creator><creator>Kaino, Yusuke</creator><creator>Uchida, Masayuki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220621</creationdate><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><author>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26794795143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ornstein-Uhlenbeck process</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Tonaki, Yozo</creatorcontrib><creatorcontrib>Kaino, Yusuke</creatorcontrib><creatorcontrib>Uchida, Masayuki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonaki, Yozo</au><au>Kaino, Yusuke</au><au>Uchida, Masayuki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</atitle><jtitle>arXiv.org</jtitle><date>2022-06-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2679479514
source Publicly Available Content Database
subjects Ornstein-Uhlenbeck process
Parameter estimation
Partial differential equations
Statistical inference
title Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameter%20estimation%20for%20a%20linear%20parabolic%20SPDE%20model%20in%20two%20space%20dimensions%20with%20a%20small%20noise&rft.jtitle=arXiv.org&rft.au=Tonaki,%20Yozo&rft.date=2022-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2679479514%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26794795143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679479514&rft_id=info:pmid/&rfr_iscdi=true