Loading…
Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise
We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We prov...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tonaki, Yozo Kaino, Yusuke Uchida, Masayuki |
description | We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2679479514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679479514</sourcerecordid><originalsourceid>FETCH-proquest_journals_26794795143</originalsourceid><addsrcrecordid>eNqNjksKwkAQRAdBMKh3aHAdiJPEmLUfXAq6lzZ2sMN84vSI13cWHsBVLeo9qiYq02W5zreV1jO1FBmKotCbRtd1mSk8Y0BLkQKQRLYY2TvofQAEw44wwJiIuzfcweW8P4D1DzLADuLHg4zYETzYkpMkCnw4PpMqFo0B51looaY9GqHlL-dqdTxcd6d8DP71TqO3wb-DS9UtvWqrpq3XVfkf9QUEUkTn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679479514</pqid></control><display><type>article</type><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><source>Publicly Available Content Database</source><creator>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</creator><creatorcontrib>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</creatorcontrib><description>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ornstein-Uhlenbeck process ; Parameter estimation ; Partial differential equations ; Statistical inference</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2679479514?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Tonaki, Yozo</creatorcontrib><creatorcontrib>Kaino, Yusuke</creatorcontrib><creatorcontrib>Uchida, Masayuki</creatorcontrib><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><title>arXiv.org</title><description>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</description><subject>Ornstein-Uhlenbeck process</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjksKwkAQRAdBMKh3aHAdiJPEmLUfXAq6lzZ2sMN84vSI13cWHsBVLeo9qiYq02W5zreV1jO1FBmKotCbRtd1mSk8Y0BLkQKQRLYY2TvofQAEw44wwJiIuzfcweW8P4D1DzLADuLHg4zYETzYkpMkCnw4PpMqFo0B51looaY9GqHlL-dqdTxcd6d8DP71TqO3wb-DS9UtvWqrpq3XVfkf9QUEUkTn</recordid><startdate>20220621</startdate><enddate>20220621</enddate><creator>Tonaki, Yozo</creator><creator>Kaino, Yusuke</creator><creator>Uchida, Masayuki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220621</creationdate><title>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</title><author>Tonaki, Yozo ; Kaino, Yusuke ; Uchida, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26794795143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ornstein-Uhlenbeck process</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Tonaki, Yozo</creatorcontrib><creatorcontrib>Kaino, Yusuke</creatorcontrib><creatorcontrib>Uchida, Masayuki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonaki, Yozo</au><au>Kaino, Yusuke</au><au>Uchida, Masayuki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise</atitle><jtitle>arXiv.org</jtitle><date>2022-06-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study parameter estimation for a linear parabolic second-order stochastic partial differential equation (SPDE) in two space dimensions with a small dispersion parameter using high frequency data with respect to time and space. We set two types of \(Q\)-Wiener processes as a driving noise. We provide minimum contrast estimators of the coefficient parameters of the SPDE appearing in the coordinate process of the SPDE based on the thinned data in space, and approximate the coordinate process based on the thinned data in time. Moreover, we propose an estimator of the drift parameter using the fact that the coordinate process is the Ornstein-Uhlenbeck process and statistical inference for diffusion processes with a small noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2679479514 |
source | Publicly Available Content Database |
subjects | Ornstein-Uhlenbeck process Parameter estimation Partial differential equations Statistical inference |
title | Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameter%20estimation%20for%20a%20linear%20parabolic%20SPDE%20model%20in%20two%20space%20dimensions%20with%20a%20small%20noise&rft.jtitle=arXiv.org&rft.au=Tonaki,%20Yozo&rft.date=2022-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2679479514%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26794795143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679479514&rft_id=info:pmid/&rfr_iscdi=true |