Loading…

Enhanced Metal Coating Adhesion by Surface Modification of 3D Printed PEKKs

PEKK (polyether-ketone-ketone) polymer has been actively studied in applying electronic devices in satellites owing to its excellent light weight and thermal resistance. However, the limitation of metal coating to form on the PEKK surface is due to the high-volume resistivity and surface resistance....

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2022-06, Vol.12 (6), p.854
Main Authors: Baek, Inwoo, Lim, Chul-Min, Park, Kyoung Youl, Ryu, Bong Ki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PEKK (polyether-ketone-ketone) polymer has been actively studied in applying electronic devices in satellites owing to its excellent light weight and thermal resistance. However, the limitation of metal coating to form on the PEKK surface is due to the high-volume resistivity and surface resistance. Here, we have investigated the correlations between the chemical treatment of the surface and adhesion strength between polymer–metal coating. Three-dimensional printed PEKK objects were manufactured and nickel was deposited on the surface by electroless plating. As the concentration of H2SO4 increased from 12.5 to 14.3 mol/L, the pore diameter showed a tendency to increase. However, as growing pore induced connecting each other, the pore size re-decreased from 15.1 to 18.0 mol/L. To control pore size and uniformity, we investigated the pore diameter of 3D printed PEKK as a function of treatment time and temperature. Uniform pores were observed at a temperature of 50 °C which were formed after 10 min and the average pore size was 0.28 μm. After H2SO4 swelling, samples were re-treated in the KMnO4-H3PO4 etching system for the hydrophilic group. KMnO4 broken C=C bonding and generated hydrophilic groups such as -COOH and -OH, the contact angle decreased from 64.7 to 51.1° compared with H2SO4 swelling. XPS survey spectra confirmed that not only breaking C=C bonding but also increasing hydrophilicity due to -OH, -C-, -SO3 and the catalyst absorption of Pd was improved. As a result of adhesive strength by ASTM D3359, compared with the H2SO4 swelling, the KMnO4-H3PO4 etching system showed 5B which is the best result in standard test methods by adhesive tape test and peeling amount on the tape was less than 0.01%.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12060854