Loading…

Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning

Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagno...

Full description

Saved in:
Bibliographic Details
Published in:Digital 2022-06, Vol.2 (2), p.224-243
Main Authors: Batsakis, Sotirios, Adamou, Marios, Tachmazidis, Ilias, Jones, Sarah, Titarenko, Sofya, Antoniou, Grigoris, Kehagias, Thanasis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903
cites cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903
container_end_page 243
container_issue 2
container_start_page 224
container_title Digital
container_volume 2
creator Batsakis, Sotirios
Adamou, Marios
Tachmazidis, Ilias
Jones, Sarah
Titarenko, Sofya
Antoniou, Grigoris
Kehagias, Thanasis
description Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.
doi_str_mv 10.3390/digital2020014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2679706662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679706662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</originalsourceid><addsrcrecordid>eNpVUD1PwzAUtBBIVKUrsyXmlOdn49Rj1fAlFRigc-TYL8VVmwQ7QeLfE1QGmO50Ot3pjrFLAXMpDVz7sA293SMggFAnbII6l5lWOZz-4edsltIOAHBhBEqcsOfC9jYrYvikhhfkQgptw1-Hrmtjz-s28qUf9j1fDn1IB14Eu23aFBLfpNBs-ZN176EhviYbm1G4YGe13Sea_eKUbe5u31YP2frl_nG1XGcOEVUmlLXOG0G4UIYceFK18koI0t7fVDVW5BdkSFQEoDQSulwimNpL58a5csqujrldbD8GSn25a4fYjJXlONbkoLXG0TU_ulxsU4pUl10MBxu_SgHlz23l_9vkN3jYYTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679706662</pqid></control><display><type>article</type><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global (ProQuest)</source><creator>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</creator><creatorcontrib>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</creatorcontrib><description>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</description><identifier>ISSN: 2673-6470</identifier><identifier>EISSN: 2673-6470</identifier><identifier>DOI: 10.3390/digital2020014</identifier><language>eng</language><publisher>Nicosia: MDPI AG</publisher><subject>Adults ; Autism ; Behavior ; Communication ; Machine learning ; Patients ; Questionnaires ; Validity</subject><ispartof>Digital, 2022-06, Vol.2 (2), p.224-243</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</citedby><cites>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679706662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679706662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Adamou, Marios</creatorcontrib><creatorcontrib>Tachmazidis, Ilias</creatorcontrib><creatorcontrib>Jones, Sarah</creatorcontrib><creatorcontrib>Titarenko, Sofya</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><creatorcontrib>Kehagias, Thanasis</creatorcontrib><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><title>Digital</title><description>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</description><subject>Adults</subject><subject>Autism</subject><subject>Behavior</subject><subject>Communication</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Questionnaires</subject><subject>Validity</subject><issn>2673-6470</issn><issn>2673-6470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNpVUD1PwzAUtBBIVKUrsyXmlOdn49Rj1fAlFRigc-TYL8VVmwQ7QeLfE1QGmO50Ot3pjrFLAXMpDVz7sA293SMggFAnbII6l5lWOZz-4edsltIOAHBhBEqcsOfC9jYrYvikhhfkQgptw1-Hrmtjz-s28qUf9j1fDn1IB14Eu23aFBLfpNBs-ZN176EhviYbm1G4YGe13Sea_eKUbe5u31YP2frl_nG1XGcOEVUmlLXOG0G4UIYceFK18koI0t7fVDVW5BdkSFQEoDQSulwimNpL58a5csqujrldbD8GSn25a4fYjJXlONbkoLXG0TU_ulxsU4pUl10MBxu_SgHlz23l_9vkN3jYYTs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Batsakis, Sotirios</creator><creator>Adamou, Marios</creator><creator>Tachmazidis, Ilias</creator><creator>Jones, Sarah</creator><creator>Titarenko, Sofya</creator><creator>Antoniou, Grigoris</creator><creator>Kehagias, Thanasis</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20220601</creationdate><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><author>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adults</topic><topic>Autism</topic><topic>Behavior</topic><topic>Communication</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Questionnaires</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Adamou, Marios</creatorcontrib><creatorcontrib>Tachmazidis, Ilias</creatorcontrib><creatorcontrib>Jones, Sarah</creatorcontrib><creatorcontrib>Titarenko, Sofya</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><creatorcontrib>Kehagias, Thanasis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Digital</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batsakis, Sotirios</au><au>Adamou, Marios</au><au>Tachmazidis, Ilias</au><au>Jones, Sarah</au><au>Titarenko, Sofya</au><au>Antoniou, Grigoris</au><au>Kehagias, Thanasis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</atitle><jtitle>Digital</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>224</spage><epage>243</epage><pages>224-243</pages><issn>2673-6470</issn><eissn>2673-6470</eissn><abstract>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</abstract><cop>Nicosia</cop><pub>MDPI AG</pub><doi>10.3390/digital2020014</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-6470
ispartof Digital, 2022-06, Vol.2 (2), p.224-243
issn 2673-6470
2673-6470
language eng
recordid cdi_proquest_journals_2679706662
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global (ProQuest)
subjects Adults
Autism
Behavior
Communication
Machine learning
Patients
Questionnaires
Validity
title Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Decision%20Support%20for%20Adult%20Autism%20Diagnosis%20Using%20Machine%20Learning&rft.jtitle=Digital&rft.au=Batsakis,%20Sotirios&rft.date=2022-06-01&rft.volume=2&rft.issue=2&rft.spage=224&rft.epage=243&rft.pages=224-243&rft.issn=2673-6470&rft.eissn=2673-6470&rft_id=info:doi/10.3390/digital2020014&rft_dat=%3Cproquest_cross%3E2679706662%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679706662&rft_id=info:pmid/&rfr_iscdi=true