Loading…
Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning
Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagno...
Saved in:
Published in: | Digital 2022-06, Vol.2 (2), p.224-243 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903 |
---|---|
cites | cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903 |
container_end_page | 243 |
container_issue | 2 |
container_start_page | 224 |
container_title | Digital |
container_volume | 2 |
creator | Batsakis, Sotirios Adamou, Marios Tachmazidis, Ilias Jones, Sarah Titarenko, Sofya Antoniou, Grigoris Kehagias, Thanasis |
description | Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings. |
doi_str_mv | 10.3390/digital2020014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2679706662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679706662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</originalsourceid><addsrcrecordid>eNpVUD1PwzAUtBBIVKUrsyXmlOdn49Rj1fAlFRigc-TYL8VVmwQ7QeLfE1QGmO50Ot3pjrFLAXMpDVz7sA293SMggFAnbII6l5lWOZz-4edsltIOAHBhBEqcsOfC9jYrYvikhhfkQgptw1-Hrmtjz-s28qUf9j1fDn1IB14Eu23aFBLfpNBs-ZN176EhviYbm1G4YGe13Sea_eKUbe5u31YP2frl_nG1XGcOEVUmlLXOG0G4UIYceFK18koI0t7fVDVW5BdkSFQEoDQSulwimNpL58a5csqujrldbD8GSn25a4fYjJXlONbkoLXG0TU_ulxsU4pUl10MBxu_SgHlz23l_9vkN3jYYTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679706662</pqid></control><display><type>article</type><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global (ProQuest)</source><creator>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</creator><creatorcontrib>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</creatorcontrib><description>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</description><identifier>ISSN: 2673-6470</identifier><identifier>EISSN: 2673-6470</identifier><identifier>DOI: 10.3390/digital2020014</identifier><language>eng</language><publisher>Nicosia: MDPI AG</publisher><subject>Adults ; Autism ; Behavior ; Communication ; Machine learning ; Patients ; Questionnaires ; Validity</subject><ispartof>Digital, 2022-06, Vol.2 (2), p.224-243</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</citedby><cites>FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2679706662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2679706662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590,74895,75126</link.rule.ids></links><search><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Adamou, Marios</creatorcontrib><creatorcontrib>Tachmazidis, Ilias</creatorcontrib><creatorcontrib>Jones, Sarah</creatorcontrib><creatorcontrib>Titarenko, Sofya</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><creatorcontrib>Kehagias, Thanasis</creatorcontrib><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><title>Digital</title><description>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</description><subject>Adults</subject><subject>Autism</subject><subject>Behavior</subject><subject>Communication</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Questionnaires</subject><subject>Validity</subject><issn>2673-6470</issn><issn>2673-6470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNpVUD1PwzAUtBBIVKUrsyXmlOdn49Rj1fAlFRigc-TYL8VVmwQ7QeLfE1QGmO50Ot3pjrFLAXMpDVz7sA293SMggFAnbII6l5lWOZz-4edsltIOAHBhBEqcsOfC9jYrYvikhhfkQgptw1-Hrmtjz-s28qUf9j1fDn1IB14Eu23aFBLfpNBs-ZN176EhviYbm1G4YGe13Sea_eKUbe5u31YP2frl_nG1XGcOEVUmlLXOG0G4UIYceFK18koI0t7fVDVW5BdkSFQEoDQSulwimNpL58a5csqujrldbD8GSn25a4fYjJXlONbkoLXG0TU_ulxsU4pUl10MBxu_SgHlz23l_9vkN3jYYTs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Batsakis, Sotirios</creator><creator>Adamou, Marios</creator><creator>Tachmazidis, Ilias</creator><creator>Jones, Sarah</creator><creator>Titarenko, Sofya</creator><creator>Antoniou, Grigoris</creator><creator>Kehagias, Thanasis</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20220601</creationdate><title>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</title><author>Batsakis, Sotirios ; Adamou, Marios ; Tachmazidis, Ilias ; Jones, Sarah ; Titarenko, Sofya ; Antoniou, Grigoris ; Kehagias, Thanasis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adults</topic><topic>Autism</topic><topic>Behavior</topic><topic>Communication</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Questionnaires</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batsakis, Sotirios</creatorcontrib><creatorcontrib>Adamou, Marios</creatorcontrib><creatorcontrib>Tachmazidis, Ilias</creatorcontrib><creatorcontrib>Jones, Sarah</creatorcontrib><creatorcontrib>Titarenko, Sofya</creatorcontrib><creatorcontrib>Antoniou, Grigoris</creatorcontrib><creatorcontrib>Kehagias, Thanasis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Digital</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batsakis, Sotirios</au><au>Adamou, Marios</au><au>Tachmazidis, Ilias</au><au>Jones, Sarah</au><au>Titarenko, Sofya</au><au>Antoniou, Grigoris</au><au>Kehagias, Thanasis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning</atitle><jtitle>Digital</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>224</spage><epage>243</epage><pages>224-243</pages><issn>2673-6470</issn><eissn>2673-6470</eissn><abstract>Adult referrals to specialist autism spectrum disorder diagnostic services have increased in recent years, placing strain on existing services and illustrating the need for the development of a reliable screening tool, in order to identify and prioritize patients most likely to receive an ASD diagnosis. In this work a detailed overview of existing approaches is presented and a data driven analysis using machine learning is applied on a dataset of adult autism cases consisting of 192 cases. Our results show initial promise, achieving total positive rate (i.e., correctly classified instances to all instances ratio) up to 88.5%, but also point to limitations of currently available data, opening up avenues for further research. The main direction of this research is the development of a novel autism screening tool for adults (ASTA) also introduced in this work and preliminary results indicate the ASTA is suitable for use as a screening tool for adult populations in clinical settings.</abstract><cop>Nicosia</cop><pub>MDPI AG</pub><doi>10.3390/digital2020014</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-6470 |
ispartof | Digital, 2022-06, Vol.2 (2), p.224-243 |
issn | 2673-6470 2673-6470 |
language | eng |
recordid | cdi_proquest_journals_2679706662 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global (ProQuest) |
subjects | Adults Autism Behavior Communication Machine learning Patients Questionnaires Validity |
title | Data-Driven Decision Support for Adult Autism Diagnosis Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Decision%20Support%20for%20Adult%20Autism%20Diagnosis%20Using%20Machine%20Learning&rft.jtitle=Digital&rft.au=Batsakis,%20Sotirios&rft.date=2022-06-01&rft.volume=2&rft.issue=2&rft.spage=224&rft.epage=243&rft.pages=224-243&rft.issn=2673-6470&rft.eissn=2673-6470&rft_id=info:doi/10.3390/digital2020014&rft_dat=%3Cproquest_cross%3E2679706662%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2224-14aacd91e2849ec0de4f4d411e6dd5bf2bed8e9e1be00462e2c73209fd3cc3903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2679706662&rft_id=info:pmid/&rfr_iscdi=true |