Loading…
Investigation of a Non-Equilibrium Energy Model for Resin Transfer Molding Simulations
Due to the high design freedom and weight specific properties carbon fiber reinforced plastics (CFRP) offer significant potential in light-weighting applications, specifically in the automotive sector. The demand for medium to high production quantities with consistent material properties has paved...
Saved in:
Published in: | Journal of composites science 2022-06, Vol.6 (6), p.180 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the high design freedom and weight specific properties carbon fiber reinforced plastics (CFRP) offer significant potential in light-weighting applications, specifically in the automotive sector. The demand for medium to high production quantities with consistent material properties has paved the way for the use of high-pressure resin transfer molding (HP-RTM). Due to high experimental cost and number of the operational parameters the development of numerical simulations to predict part quality is growing. Despite this, erroneous assumptions and simplifications limit the application of HP-RTM models, specifically with regards to the energy models used to model the heat transfer occurring during infiltration. The current work investigates the operating parameters at which the thermal non-equilibrium energy model’s increased computational cost and complexity is worth added accuracy. It was found that in nearly all cases, using the thermal non-equilibrium is required to obtain an accurate prediction of the temperature development and resulting final properties within the mold after the infiltration process. |
---|---|
ISSN: | 2504-477X 2504-477X |
DOI: | 10.3390/jcs6060180 |