Loading…

Conceptual Evaluation of Factors Controlling Groundwater Chemistry in Ad-Dawadmi, Saudi Arabia, Using Visualization and Multiple Lines of Evidence

Understanding the hydrogeochemical and physicochemical processes and factors controlling the chemical characteristics of groundwater (GW) is essential in water resources studies. In this work, the authors explored, applied, and evaluated the practicality of a series of analysis methods, exploring th...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-06, Vol.14 (12), p.1857
Main Authors: Gomaa, Hassan E., Alotibi, AbdAllah A., Charni, Mohamed, AlMarri, Abdulhadi H., Gomaa, Fatma A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the hydrogeochemical and physicochemical processes and factors controlling the chemical characteristics of groundwater (GW) is essential in water resources studies. In this work, the authors explored, applied, and evaluated the practicality of a series of analysis methods, exploring their ability to improve the representation of the generic GW chemical datasets. The demonstration resulted in a detailed explanation of findings and interpretations, which benefits newcomers who may not be experts in managing such data. Visualization-based, facile, readily readable, and interpretable graphs were tuned and applied to identify the interconnected controlling factors. The examined varieties were bubble diagrams, 3D surface plots, and scatter box plot matrices. Box plot matrices yielded intensive information about the significant interacting parameters in one graph. Employing bubble diagrams produced vast detail, allowing the identification of the significant processes and enabling the recognition of internally acting mechanisms that were otherwise hidden. The identified GW evolution processes include aerosol dissolution, evaporation, direct and reverse ion exchange, precipitation of calcium salts, flushing out of soil-bounded salts, and rock weathering. pH and HCO3− fluctuations coupled with evaporation were recognized as prominent factors giving rise to the vicious salinization cycle, which is thought to be the process causing the worst deterioration in the GW quality and the salinity within the study area.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14121857