Loading…

The nonlinear Schrödinger equation in the half-space

The present paper is concerned with the half-space Dirichlet problem where R + N : = { x ∈ R N : x N > 0 } for some N ≥ 1 and p > 1 , c > 0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to ( P c ). We prove that the existence and multi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2022-06, Vol.383 (1-2), p.361-397
Main Authors: Fernández, Antonio J., Weth, Tobias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983
cites cdi_FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983
container_end_page 397
container_issue 1-2
container_start_page 361
container_title Mathematische annalen
container_volume 383
creator Fernández, Antonio J.
Weth, Tobias
description The present paper is concerned with the half-space Dirichlet problem where R + N : = { x ∈ R N : x N > 0 } for some N ≥ 1 and p > 1 , c > 0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to ( P c ). We prove that the existence and multiplicity of bounded positive solutions to ( P c ) depend in a striking way on the value of c > 0 and also on the dimension N . We find an explicit number c p ∈ ( 1 , e ) , depending only on p , which determines the threshold between existence and non-existence. In particular, in dimensions N ≥ 2 , we prove that, for 0 < c < c p , problem ( P c ) admits infinitely many bounded positive solutions, whereas, for c > c p , there are no bounded positive solutions to ( P c ).
doi_str_mv 10.1007/s00208-020-02129-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680276752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680276752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983</originalsourceid><addsrcrecordid>eNp9kD1OxDAQhS0EEmHhAlSRqA1jO06cEq34k1aiYKktxxmTrIKza2cLLsYFuBhegkRHMW-K-eaN5hFyyeCaAVQ3EYCDoklSMV5TdUQyVghOmYLqmGRpLqlUgp2Ssxg3ACAAZEbkusPcj37oPZqQv9gufH22vX_DkONub6Z-9Hnv8ylhnRkcjVtj8ZycODNEvPjtC_J6f7dePtLV88PT8nZFrSjFRFvgorRolS04StaUbS0YqkJJVpm6abFubFEVzjFZCGVsLUXjDAC23KGplViQq9l3G8bdHuOkN-M--HRS81IBr8pK8kTxmbJhjDGg09vQv5vwoRnoQzx6jkcn0T_x6IO1mJdigg_v_ln_s_UNCfpnsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680276752</pqid></control><display><type>article</type><title>The nonlinear Schrödinger equation in the half-space</title><source>Springer Nature</source><creator>Fernández, Antonio J. ; Weth, Tobias</creator><creatorcontrib>Fernández, Antonio J. ; Weth, Tobias</creatorcontrib><description>The present paper is concerned with the half-space Dirichlet problem where R + N : = { x ∈ R N : x N &gt; 0 } for some N ≥ 1 and p &gt; 1 , c &gt; 0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to ( P c ). We prove that the existence and multiplicity of bounded positive solutions to ( P c ) depend in a striking way on the value of c &gt; 0 and also on the dimension N . We find an explicit number c p ∈ ( 1 , e ) , depending only on p , which determines the threshold between existence and non-existence. In particular, in dimensions N ≥ 2 , we prove that, for 0 &lt; c &lt; c p , problem ( P c ) admits infinitely many bounded positive solutions, whereas, for c &gt; c p , there are no bounded positive solutions to ( P c ).</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-020-02129-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Dirichlet problem ; Half spaces ; Mathematics ; Mathematics and Statistics ; Schrodinger equation</subject><ispartof>Mathematische annalen, 2022-06, Vol.383 (1-2), p.361-397</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983</citedby><cites>FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983</cites><orcidid>0000-0001-5347-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fernández, Antonio J.</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><title>The nonlinear Schrödinger equation in the half-space</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>The present paper is concerned with the half-space Dirichlet problem where R + N : = { x ∈ R N : x N &gt; 0 } for some N ≥ 1 and p &gt; 1 , c &gt; 0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to ( P c ). We prove that the existence and multiplicity of bounded positive solutions to ( P c ) depend in a striking way on the value of c &gt; 0 and also on the dimension N . We find an explicit number c p ∈ ( 1 , e ) , depending only on p , which determines the threshold between existence and non-existence. In particular, in dimensions N ≥ 2 , we prove that, for 0 &lt; c &lt; c p , problem ( P c ) admits infinitely many bounded positive solutions, whereas, for c &gt; c p , there are no bounded positive solutions to ( P c ).</description><subject>Dirichlet problem</subject><subject>Half spaces</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Schrodinger equation</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OxDAQhS0EEmHhAlSRqA1jO06cEq34k1aiYKktxxmTrIKza2cLLsYFuBhegkRHMW-K-eaN5hFyyeCaAVQ3EYCDoklSMV5TdUQyVghOmYLqmGRpLqlUgp2Ssxg3ACAAZEbkusPcj37oPZqQv9gufH22vX_DkONub6Z-9Hnv8ylhnRkcjVtj8ZycODNEvPjtC_J6f7dePtLV88PT8nZFrSjFRFvgorRolS04StaUbS0YqkJJVpm6abFubFEVzjFZCGVsLUXjDAC23KGplViQq9l3G8bdHuOkN-M--HRS81IBr8pK8kTxmbJhjDGg09vQv5vwoRnoQzx6jkcn0T_x6IO1mJdigg_v_ln_s_UNCfpnsQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fernández, Antonio J.</creator><creator>Weth, Tobias</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid></search><sort><creationdate>20220601</creationdate><title>The nonlinear Schrödinger equation in the half-space</title><author>Fernández, Antonio J. ; Weth, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dirichlet problem</topic><topic>Half spaces</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández, Antonio J.</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández, Antonio J.</au><au>Weth, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nonlinear Schrödinger equation in the half-space</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>383</volume><issue>1-2</issue><spage>361</spage><epage>397</epage><pages>361-397</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The present paper is concerned with the half-space Dirichlet problem where R + N : = { x ∈ R N : x N &gt; 0 } for some N ≥ 1 and p &gt; 1 , c &gt; 0 are constants. We analyse the existence, non-existence and multiplicity of bounded positive solutions to ( P c ). We prove that the existence and multiplicity of bounded positive solutions to ( P c ) depend in a striking way on the value of c &gt; 0 and also on the dimension N . We find an explicit number c p ∈ ( 1 , e ) , depending only on p , which determines the threshold between existence and non-existence. In particular, in dimensions N ≥ 2 , we prove that, for 0 &lt; c &lt; c p , problem ( P c ) admits infinitely many bounded positive solutions, whereas, for c &gt; c p , there are no bounded positive solutions to ( P c ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-020-02129-8</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2022-06, Vol.383 (1-2), p.361-397
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2680276752
source Springer Nature
subjects Dirichlet problem
Half spaces
Mathematics
Mathematics and Statistics
Schrodinger equation
title The nonlinear Schrödinger equation in the half-space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nonlinear%20Schr%C3%B6dinger%20equation%20in%20the%20half-space&rft.jtitle=Mathematische%20annalen&rft.au=Fern%C3%A1ndez,%20Antonio%20J.&rft.date=2022-06-01&rft.volume=383&rft.issue=1-2&rft.spage=361&rft.epage=397&rft.pages=361-397&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-020-02129-8&rft_dat=%3Cproquest_cross%3E2680276752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-d0236cec8c42e51b6d931e848517a9bde9bc474ff15438ac953bfa00ed2fea983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680276752&rft_id=info:pmid/&rfr_iscdi=true