Loading…

Dynamic Thermal Rating Forecasting Methods: A Systematic Survey

Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.65193-65205
Main Authors: Lawal, Olatunji Ahmed, Teh, Jiashen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33
cites cdi_FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33
container_end_page 65205
container_issue
container_start_page 65193
container_title IEEE access
container_volume 10
creator Lawal, Olatunji Ahmed
Teh, Jiashen
description Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer's outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods' evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.
doi_str_mv 10.1109/ACCESS.2022.3183606
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680397285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9797691</ieee_id><doaj_id>oai_doaj_org_article_c47a607010394984958c04af80e3f967</doaj_id><sourcerecordid>2680397285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33</originalsourceid><addsrcrecordid>eNpNUE1rwkAUDKWFivUXeAn0rN2v7EcvRVJtBUuhsedls3nRiDF2Nxb8912NSN_lPYaZecNE0RCjMcZIPU3SdJplY4IIGVMsKUf8JuoRzNWIJpTf_rvvo4H3GxRGBigRvejl9bgzdWXj5Rpcbbbxl2mr3SqeNQ6s8ef7A9p1U_jneBJnR99CHSg2zg7uF44P0V1pth4Gl92PvmfTZfo-Wny-zdPJYmQple3IEprjIiFKSEUIU4CNIfkpBi0xoyYXogCS5IIbLjCAlaWkDDGWc6zK4NGP5p1v0ZiN3ruqNu6oG1PpM9C4lTYuxNqCtkwYjgTCiCqmJFOJtIiZUiKgpeIieD12XnvX_BzAt3rTHNwuxNeEy6ASRCaBRTuWdY33DsrrV4z0qXjdFa9PxetL8UE17FQVAFwVSijBFaZ_xnB71A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680397285</pqid></control><display><type>article</type><title>Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</title><source>IEEE Xplore Open Access Journals</source><creator>Lawal, Olatunji Ahmed ; Teh, Jiashen</creator><creatorcontrib>Lawal, Olatunji Ahmed ; Teh, Jiashen</creatorcontrib><description>Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer's outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods' evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3183606</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Data models ; Deep learning ; deep learning forecasts ; Dynamic thermal rating ; Electric power grids ; Electric power lines ; Forecasting ; Lead time ; Machine learning ; Meteorology ; Neural networks ; point forecast errors ; Power lines ; Predictive models ; probabilistic forecast errors ; Recurrent neural networks ; Reliability ; smart grids ; Statistical analysis ; stochastic forecasts ; Temperature distribution ; Temperature measurement</subject><ispartof>IEEE access, 2022, Vol.10, p.65193-65205</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33</citedby><cites>FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33</cites><orcidid>0000-0002-6875-6504 ; 0000-0001-9741-6245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9797691$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Lawal, Olatunji Ahmed</creatorcontrib><creatorcontrib>Teh, Jiashen</creatorcontrib><title>Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer's outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods' evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.</description><subject>Artificial neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep learning forecasts</subject><subject>Dynamic thermal rating</subject><subject>Electric power grids</subject><subject>Electric power lines</subject><subject>Forecasting</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>point forecast errors</subject><subject>Power lines</subject><subject>Predictive models</subject><subject>probabilistic forecast errors</subject><subject>Recurrent neural networks</subject><subject>Reliability</subject><subject>smart grids</subject><subject>Statistical analysis</subject><subject>stochastic forecasts</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAUDKWFivUXeAn0rN2v7EcvRVJtBUuhsedls3nRiDF2Nxb8912NSN_lPYaZecNE0RCjMcZIPU3SdJplY4IIGVMsKUf8JuoRzNWIJpTf_rvvo4H3GxRGBigRvejl9bgzdWXj5Rpcbbbxl2mr3SqeNQ6s8ef7A9p1U_jneBJnR99CHSg2zg7uF44P0V1pth4Gl92PvmfTZfo-Wny-zdPJYmQple3IEprjIiFKSEUIU4CNIfkpBi0xoyYXogCS5IIbLjCAlaWkDDGWc6zK4NGP5p1v0ZiN3ruqNu6oG1PpM9C4lTYuxNqCtkwYjgTCiCqmJFOJtIiZUiKgpeIieD12XnvX_BzAt3rTHNwuxNeEy6ASRCaBRTuWdY33DsrrV4z0qXjdFa9PxetL8UE17FQVAFwVSijBFaZ_xnB71A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lawal, Olatunji Ahmed</creator><creator>Teh, Jiashen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6875-6504</orcidid><orcidid>https://orcid.org/0000-0001-9741-6245</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</title><author>Lawal, Olatunji Ahmed ; Teh, Jiashen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep learning forecasts</topic><topic>Dynamic thermal rating</topic><topic>Electric power grids</topic><topic>Electric power lines</topic><topic>Forecasting</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>point forecast errors</topic><topic>Power lines</topic><topic>Predictive models</topic><topic>probabilistic forecast errors</topic><topic>Recurrent neural networks</topic><topic>Reliability</topic><topic>smart grids</topic><topic>Statistical analysis</topic><topic>stochastic forecasts</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawal, Olatunji Ahmed</creatorcontrib><creatorcontrib>Teh, Jiashen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawal, Olatunji Ahmed</au><au>Teh, Jiashen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Thermal Rating Forecasting Methods: A Systematic Survey</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>65193</spage><epage>65205</epage><pages>65193-65205</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer's outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods' evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3183606</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6875-6504</orcidid><orcidid>https://orcid.org/0000-0001-9741-6245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.65193-65205
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2680397285
source IEEE Xplore Open Access Journals
subjects Artificial neural networks
Data models
Deep learning
deep learning forecasts
Dynamic thermal rating
Electric power grids
Electric power lines
Forecasting
Lead time
Machine learning
Meteorology
Neural networks
point forecast errors
Power lines
Predictive models
probabilistic forecast errors
Recurrent neural networks
Reliability
smart grids
Statistical analysis
stochastic forecasts
Temperature distribution
Temperature measurement
title Dynamic Thermal Rating Forecasting Methods: A Systematic Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Thermal%20Rating%20Forecasting%20Methods:%20A%20Systematic%20Survey&rft.jtitle=IEEE%20access&rft.au=Lawal,%20Olatunji%20Ahmed&rft.date=2022&rft.volume=10&rft.spage=65193&rft.epage=65205&rft.pages=65193-65205&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3183606&rft_dat=%3Cproquest_cross%3E2680397285%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-c23b1d5297892249e1aa2b00813f143ab77de25b76a671eec8f834044b619fc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680397285&rft_id=info:pmid/&rft_ieee_id=9797691&rfr_iscdi=true