Loading…

Separation method of particles based on electromagnetic coupling

This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diamete...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500
Main Authors: Zou, Junchen, Wang, Min, Wei, Yuan, Zhang, Hongli, Liu, Shulin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763
container_end_page 6500
container_issue 12
container_start_page 6485
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Zou, Junchen
Wang, Min
Wei, Yuan
Zhang, Hongli
Liu, Shulin
description This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.
doi_str_mv 10.1177/09544062211072461
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680546588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062211072461</sage_id><sourcerecordid>2680546588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeA59TZ2cnu9qYUrULBg3oO22RSU9Js3E0P_nu3VPAgzmVg3vfewBPiWsJMSmNuYV4QgUaUEgySlidigkAyx7lVp2Jy0PMDcC4uYtxCGtTFRNy98uCCG1vfZzseP3yd-SZLp7GtOo7Z2kVOpz7jjqsx-J3b9Jy0rPL7oWv7zaU4a1wX-epnT8X748Pb4ilfvSyfF_ervEJNYy6ZrEGslWJTkzSoNPIaXMNFRZYaKpRlTdQgsa4NJUA5gLlBsAhGq6m4OeYOwX_uOY7l1u9Dn16WqC0UpAtrEyWPVBV8jIGbcgjtzoWvUkJ5KKr8U1TyzI6e6Db8m_q_4Rv-DWXe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680546588</pqid></control><display><type>article</type><title>Separation method of particles based on electromagnetic coupling</title><source>IMechE_英国机械工程师协会期刊</source><source>Sage Journals Online</source><creator>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</creator><creatorcontrib>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</creatorcontrib><description>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062211072461</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Drag ; Dynamic models ; Electromagnetic coupling ; Electromagnetic fields ; Electromagnetism ; Flux density ; Magnetic fields ; Magnetic flux ; Magnetism ; Nonlinear dynamics ; Particle size ; Separation</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</cites><orcidid>0000-0001-8526-9364 ; 0000-0002-9776-3615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062211072461$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062211072461$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79236</link.rule.ids></links><search><creatorcontrib>Zou, Junchen</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wei, Yuan</creatorcontrib><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><title>Separation method of particles based on electromagnetic coupling</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</description><subject>Drag</subject><subject>Dynamic models</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Flux density</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Nonlinear dynamics</subject><subject>Particle size</subject><subject>Separation</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLeA59TZ2cnu9qYUrULBg3oO22RSU9Js3E0P_nu3VPAgzmVg3vfewBPiWsJMSmNuYV4QgUaUEgySlidigkAyx7lVp2Jy0PMDcC4uYtxCGtTFRNy98uCCG1vfZzseP3yd-SZLp7GtOo7Z2kVOpz7jjqsx-J3b9Jy0rPL7oWv7zaU4a1wX-epnT8X748Pb4ilfvSyfF_ervEJNYy6ZrEGslWJTkzSoNPIaXMNFRZYaKpRlTdQgsa4NJUA5gLlBsAhGq6m4OeYOwX_uOY7l1u9Dn16WqC0UpAtrEyWPVBV8jIGbcgjtzoWvUkJ5KKr8U1TyzI6e6Db8m_q_4Rv-DWXe</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zou, Junchen</creator><creator>Wang, Min</creator><creator>Wei, Yuan</creator><creator>Zhang, Hongli</creator><creator>Liu, Shulin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-8526-9364</orcidid><orcidid>https://orcid.org/0000-0002-9776-3615</orcidid></search><sort><creationdate>202206</creationdate><title>Separation method of particles based on electromagnetic coupling</title><author>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Drag</topic><topic>Dynamic models</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Flux density</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Nonlinear dynamics</topic><topic>Particle size</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Junchen</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wei, Yuan</creatorcontrib><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Junchen</au><au>Wang, Min</au><au>Wei, Yuan</au><au>Zhang, Hongli</au><au>Liu, Shulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation method of particles based on electromagnetic coupling</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-06</date><risdate>2022</risdate><volume>236</volume><issue>12</issue><spage>6485</spage><epage>6500</epage><pages>6485-6500</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062211072461</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8526-9364</orcidid><orcidid>https://orcid.org/0000-0002-9776-3615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2680546588
source IMechE_英国机械工程师协会期刊; Sage Journals Online
subjects Drag
Dynamic models
Electromagnetic coupling
Electromagnetic fields
Electromagnetism
Flux density
Magnetic fields
Magnetic flux
Magnetism
Nonlinear dynamics
Particle size
Separation
title Separation method of particles based on electromagnetic coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20method%20of%20particles%20based%20on%20electromagnetic%20coupling&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zou,%20Junchen&rft.date=2022-06&rft.volume=236&rft.issue=12&rft.spage=6485&rft.epage=6500&rft.pages=6485-6500&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062211072461&rft_dat=%3Cproquest_cross%3E2680546588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680546588&rft_id=info:pmid/&rft_sage_id=10.1177_09544062211072461&rfr_iscdi=true