Loading…
Separation method of particles based on electromagnetic coupling
This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diamete...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763 |
container_end_page | 6500 |
container_issue | 12 |
container_start_page | 6485 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 236 |
creator | Zou, Junchen Wang, Min Wei, Yuan Zhang, Hongli Liu, Shulin |
description | This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density. |
doi_str_mv | 10.1177/09544062211072461 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680546588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062211072461</sage_id><sourcerecordid>2680546588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeA59TZ2cnu9qYUrULBg3oO22RSU9Js3E0P_nu3VPAgzmVg3vfewBPiWsJMSmNuYV4QgUaUEgySlidigkAyx7lVp2Jy0PMDcC4uYtxCGtTFRNy98uCCG1vfZzseP3yd-SZLp7GtOo7Z2kVOpz7jjqsx-J3b9Jy0rPL7oWv7zaU4a1wX-epnT8X748Pb4ilfvSyfF_ervEJNYy6ZrEGslWJTkzSoNPIaXMNFRZYaKpRlTdQgsa4NJUA5gLlBsAhGq6m4OeYOwX_uOY7l1u9Dn16WqC0UpAtrEyWPVBV8jIGbcgjtzoWvUkJ5KKr8U1TyzI6e6Db8m_q_4Rv-DWXe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680546588</pqid></control><display><type>article</type><title>Separation method of particles based on electromagnetic coupling</title><source>IMechE_英国机械工程师协会期刊</source><source>Sage Journals Online</source><creator>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</creator><creatorcontrib>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</creatorcontrib><description>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062211072461</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Drag ; Dynamic models ; Electromagnetic coupling ; Electromagnetic fields ; Electromagnetism ; Flux density ; Magnetic fields ; Magnetic flux ; Magnetism ; Nonlinear dynamics ; Particle size ; Separation</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</cites><orcidid>0000-0001-8526-9364 ; 0000-0002-9776-3615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062211072461$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062211072461$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79236</link.rule.ids></links><search><creatorcontrib>Zou, Junchen</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wei, Yuan</creatorcontrib><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><title>Separation method of particles based on electromagnetic coupling</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</description><subject>Drag</subject><subject>Dynamic models</subject><subject>Electromagnetic coupling</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Flux density</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Nonlinear dynamics</subject><subject>Particle size</subject><subject>Separation</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLeA59TZ2cnu9qYUrULBg3oO22RSU9Js3E0P_nu3VPAgzmVg3vfewBPiWsJMSmNuYV4QgUaUEgySlidigkAyx7lVp2Jy0PMDcC4uYtxCGtTFRNy98uCCG1vfZzseP3yd-SZLp7GtOo7Z2kVOpz7jjqsx-J3b9Jy0rPL7oWv7zaU4a1wX-epnT8X748Pb4ilfvSyfF_ervEJNYy6ZrEGslWJTkzSoNPIaXMNFRZYaKpRlTdQgsa4NJUA5gLlBsAhGq6m4OeYOwX_uOY7l1u9Dn16WqC0UpAtrEyWPVBV8jIGbcgjtzoWvUkJ5KKr8U1TyzI6e6Db8m_q_4Rv-DWXe</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zou, Junchen</creator><creator>Wang, Min</creator><creator>Wei, Yuan</creator><creator>Zhang, Hongli</creator><creator>Liu, Shulin</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-8526-9364</orcidid><orcidid>https://orcid.org/0000-0002-9776-3615</orcidid></search><sort><creationdate>202206</creationdate><title>Separation method of particles based on electromagnetic coupling</title><author>Zou, Junchen ; Wang, Min ; Wei, Yuan ; Zhang, Hongli ; Liu, Shulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Drag</topic><topic>Dynamic models</topic><topic>Electromagnetic coupling</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Flux density</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Nonlinear dynamics</topic><topic>Particle size</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Junchen</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Wei, Yuan</creatorcontrib><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Junchen</au><au>Wang, Min</au><au>Wei, Yuan</au><au>Zhang, Hongli</au><au>Liu, Shulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation method of particles based on electromagnetic coupling</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-06</date><risdate>2022</risdate><volume>236</volume><issue>12</issue><spage>6485</spage><epage>6500</epage><pages>6485-6500</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>This paper investigates an approach for particle matter (PM) separation with electromagnetic field coupling. In consideration of electric and magnetic fields, linear and nonlinear dynamics models of PM separation are established. Simultaneously, this model considers the response of different diameters and velocities of PM to the change of the dynamic model, and the coupling effect of electromagnetic field is used to separate particles. Numerical results present that PM diameter, magnetic field drag, and strength play an important role in the separation of the PM matter. Moreover, with the increase of flux density or the decrease of drag force, the PM separation displacement will grow. Changing the flux density is better than changing the drag force to separate the particles. Following the growth of particle diameter and magnetic flux density, the particle changes from linear motion to spiral motion, and the final particle velocity reaches a stable state after attenuation. In addition, considering the changes of drag force and magnetic field, when drag decrease and magnetic flux density increase, the separation effect gradually becomes better, and the optimal separation distance reaches the decimeter level. However, in most cases, the PM displacement response is small. The work has certified the proposed separation method is feasible by decreasing drag and enhancing magnetic flux density.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062211072461</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8526-9364</orcidid><orcidid>https://orcid.org/0000-0002-9776-3615</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-06, Vol.236 (12), p.6485-6500 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2680546588 |
source | IMechE_英国机械工程师协会期刊; Sage Journals Online |
subjects | Drag Dynamic models Electromagnetic coupling Electromagnetic fields Electromagnetism Flux density Magnetic fields Magnetic flux Magnetism Nonlinear dynamics Particle size Separation |
title | Separation method of particles based on electromagnetic coupling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20method%20of%20particles%20based%20on%20electromagnetic%20coupling&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zou,%20Junchen&rft.date=2022-06&rft.volume=236&rft.issue=12&rft.spage=6485&rft.epage=6500&rft.pages=6485-6500&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062211072461&rft_dat=%3Cproquest_cross%3E2680546588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-1e48722d33e7d4172362eb0afe5c484f4538e644f24e6d747233a009720820763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680546588&rft_id=info:pmid/&rft_sage_id=10.1177_09544062211072461&rfr_iscdi=true |