Loading…

Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence

This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of systems science and complexity 2022-06, Vol.35 (3), p.1030-1051
Main Authors: Fang, Longxiang, Zhang, Xinsheng, Jin, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733
cites cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733
container_end_page 1051
container_issue 3
container_start_page 1030
container_title Journal of systems science and complexity
container_volume 35
creator Fang, Longxiang
Zhang, Xinsheng
Jin, Qing
description This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.
doi_str_mv 10.1007/s11424-021-0037-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680865592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680865592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbpE3axzF1EwYT5p5D2t7Oji6pSfuwb2-kgk8-3X_nnAs_Qu4ZPDIA9RQYS3maAGcJgFAJXJAZy7IiUSDVZewBikQynl6TmxCOUSMLyGfEbfuhPZmOrrwb-9YeqGvoGgf07oAW3Rjo0p16Z9EOgbaW7tC3GKixNX033nQddnR3DgOeAt3bGj1d-OqzPWGNxkZvP3aGPmOP8WYrvCVXjekC3v3WOdm_vnws18lmu3pbLjZJJZgckkZlUOZNWgteZU1mCgCZApOlZKIUKs1rU0NhOBdKCIhzqlhRoajyRpUs7ubkYcrtvfsaMQz66EZv40vNZQ65jGx4VLFJVXkXgsdG9z7S8GfNQP9w1RNXHbnqH64aoodPnhC19oD-L_l_0zfwO3p4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680865592</pqid></control><display><type>article</type><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><source>Springer Link</source><creator>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</creator><creatorcontrib>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</creatorcontrib><description>This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-021-0037-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Statistics ; System reliability ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2022-06, Vol.35 (3), p.1030-1051</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2021</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</citedby><cites>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Statistics</subject><subject>System reliability</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbpE3axzF1EwYT5p5D2t7Oji6pSfuwb2-kgk8-3X_nnAs_Qu4ZPDIA9RQYS3maAGcJgFAJXJAZy7IiUSDVZewBikQynl6TmxCOUSMLyGfEbfuhPZmOrrwb-9YeqGvoGgf07oAW3Rjo0p16Z9EOgbaW7tC3GKixNX033nQddnR3DgOeAt3bGj1d-OqzPWGNxkZvP3aGPmOP8WYrvCVXjekC3v3WOdm_vnws18lmu3pbLjZJJZgckkZlUOZNWgteZU1mCgCZApOlZKIUKs1rU0NhOBdKCIhzqlhRoajyRpUs7ubkYcrtvfsaMQz66EZv40vNZQ65jGx4VLFJVXkXgsdG9z7S8GfNQP9w1RNXHbnqH64aoodPnhC19oD-L_l_0zfwO3p4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fang, Longxiang</creator><creator>Zhang, Xinsheng</creator><creator>Jin, Qing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><author>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Statistics</topic><topic>System reliability</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Longxiang</au><au>Zhang, Xinsheng</au><au>Jin, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1030</spage><epage>1051</epage><pages>1030-1051</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-021-0037-0</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2022-06, Vol.35 (3), p.1030-1051
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2680865592
source Springer Link
subjects Complex Systems
Control
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Statistics
System reliability
Systems Theory
title Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Grouping%20of%20Heterogeneous%20Components%20in%20Series%20and%20Parallel%20Systems%20Under%20Archimedean%20Copula%20Dependence&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Fang,%20Longxiang&rft.date=2022-06-01&rft.volume=35&rft.issue=3&rft.spage=1030&rft.epage=1051&rft.pages=1030-1051&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-021-0037-0&rft_dat=%3Cproquest_cross%3E2680865592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680865592&rft_id=info:pmid/&rfr_iscdi=true