Loading…
Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence
This paper considers series and parallel systems comprising n components drawn from a heterogeneous population consisting of m different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assu...
Saved in:
Published in: | Journal of systems science and complexity 2022-06, Vol.35 (3), p.1030-1051 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733 |
container_end_page | 1051 |
container_issue | 3 |
container_start_page | 1030 |
container_title | Journal of systems science and complexity |
container_volume | 35 |
creator | Fang, Longxiang Zhang, Xinsheng Jin, Qing |
description | This paper considers series and parallel systems comprising
n
components drawn from a heterogeneous population consisting of
m
different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here. |
doi_str_mv | 10.1007/s11424-021-0037-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680865592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680865592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbpE3axzF1EwYT5p5D2t7Oji6pSfuwb2-kgk8-3X_nnAs_Qu4ZPDIA9RQYS3maAGcJgFAJXJAZy7IiUSDVZewBikQynl6TmxCOUSMLyGfEbfuhPZmOrrwb-9YeqGvoGgf07oAW3Rjo0p16Z9EOgbaW7tC3GKixNX033nQddnR3DgOeAt3bGj1d-OqzPWGNxkZvP3aGPmOP8WYrvCVXjekC3v3WOdm_vnws18lmu3pbLjZJJZgckkZlUOZNWgteZU1mCgCZApOlZKIUKs1rU0NhOBdKCIhzqlhRoajyRpUs7ubkYcrtvfsaMQz66EZv40vNZQ65jGx4VLFJVXkXgsdG9z7S8GfNQP9w1RNXHbnqH64aoodPnhC19oD-L_l_0zfwO3p4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680865592</pqid></control><display><type>article</type><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><source>Springer Link</source><creator>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</creator><creatorcontrib>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</creatorcontrib><description>This paper considers series and parallel systems comprising
n
components drawn from a heterogeneous population consisting of
m
different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-021-0037-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Statistics ; System reliability ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2022-06, Vol.35 (3), p.1030-1051</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2021</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</citedby><cites>FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper considers series and parallel systems comprising
n
components drawn from a heterogeneous population consisting of
m
different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Statistics</subject><subject>System reliability</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLeAz9WbpE3axzF1EwYT5p5D2t7Oji6pSfuwb2-kgk8-3X_nnAs_Qu4ZPDIA9RQYS3maAGcJgFAJXJAZy7IiUSDVZewBikQynl6TmxCOUSMLyGfEbfuhPZmOrrwb-9YeqGvoGgf07oAW3Rjo0p16Z9EOgbaW7tC3GKixNX033nQddnR3DgOeAt3bGj1d-OqzPWGNxkZvP3aGPmOP8WYrvCVXjekC3v3WOdm_vnws18lmu3pbLjZJJZgckkZlUOZNWgteZU1mCgCZApOlZKIUKs1rU0NhOBdKCIhzqlhRoajyRpUs7ubkYcrtvfsaMQz66EZv40vNZQ65jGx4VLFJVXkXgsdG9z7S8GfNQP9w1RNXHbnqH64aoodPnhC19oD-L_l_0zfwO3p4</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Fang, Longxiang</creator><creator>Zhang, Xinsheng</creator><creator>Jin, Qing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</title><author>Fang, Longxiang ; Zhang, Xinsheng ; Jin, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Statistics</topic><topic>System reliability</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Longxiang</creatorcontrib><creatorcontrib>Zhang, Xinsheng</creatorcontrib><creatorcontrib>Jin, Qing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Longxiang</au><au>Zhang, Xinsheng</au><au>Jin, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1030</spage><epage>1051</epage><pages>1030-1051</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper considers series and parallel systems comprising
n
components drawn from a heterogeneous population consisting of
m
different subpopulations. The components within each subpopulation are assumed to be dependent, while the subpopulations are independent of each other. The authors also assume that the subpopulations have different Archimedean copulas for their dependence. Under this setup, the authors discuss the series and parallel systems reliability for three different cases, respectively. The authors use the theory of stochastic orders and majorization to establish the main results, and finally present some numerical examples to illustrate all the results established here.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-021-0037-0</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2022-06, Vol.35 (3), p.1030-1051 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2680865592 |
source | Springer Link |
subjects | Complex Systems Control Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Statistics System reliability Systems Theory |
title | Optimal Grouping of Heterogeneous Components in Series and Parallel Systems Under Archimedean Copula Dependence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Grouping%20of%20Heterogeneous%20Components%20in%20Series%20and%20Parallel%20Systems%20Under%20Archimedean%20Copula%20Dependence&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Fang,%20Longxiang&rft.date=2022-06-01&rft.volume=35&rft.issue=3&rft.spage=1030&rft.epage=1051&rft.pages=1030-1051&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-021-0037-0&rft_dat=%3Cproquest_cross%3E2680865592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f750b8f4d32c5f5a90064016b613b3748dad09a22373307484719ce3c8f7b1733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680865592&rft_id=info:pmid/&rfr_iscdi=true |