Loading…

E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time

Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimizat...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2022-06, Vol.2022, p.1-12
Main Authors: Essiet, Ima Okon, Sun, Yanxia, Wang, Zenghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3
container_end_page 12
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Essiet, Ima Okon
Sun, Yanxia
Wang, Zenghui
description Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.
doi_str_mv 10.1155/2022/4418706
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680910363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680910363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</originalsourceid><addsrcrecordid>eNp9kM1OAjEURhujiYjufIAmLrXS_-m4IwZhEhSjmLibtJ0OlAwz2CkY3t4hsHZ1v8XJvd89ANwS_EiIEAOKKR1wTlSC5RnoESEZEoQn513GlCNC2fcluGrbFcaUCKJ64GOEiv3b53iIsix7gkP4uq2iRzOzcjb6nYPDatEEH5drWDYBTnRdVL5ewHcdXGzgbBP9Wlc-7mGzcwHO_dpdg4tSV627Oc0--HoZzZ8naDobZ8_DKbI05RFZQ1ItOVWiNMSkSjNnpDRUW0USRQ22xOJUFMYqrq3gRFDpEsV0yroPjWF9cHfcuwnNz9a1MV8121B3J3MqFU4JZpJ11MORsqFp2-DKfBO6ymGfE5wfrOUHa_nJWoffH_Glrwv96_-n_wDA3mnr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680910363</pqid></control><display><type>article</type><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><source>Wiley_OA刊</source><source>ProQuest - Publicly Available Content Database</source><creator>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui</creator><contributor>Wang, Hui ; Hui Wang</contributor><creatorcontrib>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui ; Wang, Hui ; Hui Wang</creatorcontrib><description>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/4418706</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Euclidean geometry ; Evolutionary algorithms ; Function space ; Genetic algorithms ; Multiple objective analysis ; Mutation ; Objectives ; Optimization ; Pareto optimization ; Pareto optimum ; Population ; Principal components analysis ; Solution space ; Sorting algorithms ; Systems stability</subject><ispartof>Mathematical problems in engineering, 2022-06, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Ima Okon Essiet et al.</rights><rights>Copyright © 2022 Ima Okon Essiet et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</cites><orcidid>0000-0003-3025-336X ; 0000-0002-3455-9625 ; 0000-0003-1418-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2680910363/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2680910363?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Hui</contributor><contributor>Hui Wang</contributor><creatorcontrib>Essiet, Ima Okon</creatorcontrib><creatorcontrib>Sun, Yanxia</creatorcontrib><creatorcontrib>Wang, Zenghui</creatorcontrib><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><title>Mathematical problems in engineering</title><description>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</description><subject>Euclidean geometry</subject><subject>Evolutionary algorithms</subject><subject>Function space</subject><subject>Genetic algorithms</subject><subject>Multiple objective analysis</subject><subject>Mutation</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Solution space</subject><subject>Sorting algorithms</subject><subject>Systems stability</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1OAjEURhujiYjufIAmLrXS_-m4IwZhEhSjmLibtJ0OlAwz2CkY3t4hsHZ1v8XJvd89ANwS_EiIEAOKKR1wTlSC5RnoESEZEoQn513GlCNC2fcluGrbFcaUCKJ64GOEiv3b53iIsix7gkP4uq2iRzOzcjb6nYPDatEEH5drWDYBTnRdVL5ewHcdXGzgbBP9Wlc-7mGzcwHO_dpdg4tSV627Oc0--HoZzZ8naDobZ8_DKbI05RFZQ1ItOVWiNMSkSjNnpDRUW0USRQ22xOJUFMYqrq3gRFDpEsV0yroPjWF9cHfcuwnNz9a1MV8121B3J3MqFU4JZpJ11MORsqFp2-DKfBO6ymGfE5wfrOUHa_nJWoffH_Glrwv96_-n_wDA3mnr</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Essiet, Ima Okon</creator><creator>Sun, Yanxia</creator><creator>Wang, Zenghui</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3025-336X</orcidid><orcidid>https://orcid.org/0000-0002-3455-9625</orcidid><orcidid>https://orcid.org/0000-0003-1418-6320</orcidid></search><sort><creationdate>20220617</creationdate><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><author>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Euclidean geometry</topic><topic>Evolutionary algorithms</topic><topic>Function space</topic><topic>Genetic algorithms</topic><topic>Multiple objective analysis</topic><topic>Mutation</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Solution space</topic><topic>Sorting algorithms</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Essiet, Ima Okon</creatorcontrib><creatorcontrib>Sun, Yanxia</creatorcontrib><creatorcontrib>Wang, Zenghui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Essiet, Ima Okon</au><au>Sun, Yanxia</au><au>Wang, Zenghui</au><au>Wang, Hui</au><au>Hui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-06-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4418706</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3025-336X</orcidid><orcidid>https://orcid.org/0000-0002-3455-9625</orcidid><orcidid>https://orcid.org/0000-0003-1418-6320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-06, Vol.2022, p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2680910363
source Wiley_OA刊; ProQuest - Publicly Available Content Database
subjects Euclidean geometry
Evolutionary algorithms
Function space
Genetic algorithms
Multiple objective analysis
Mutation
Objectives
Optimization
Pareto optimization
Pareto optimum
Population
Principal components analysis
Solution space
Sorting algorithms
Systems stability
title E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-dyNSGA-III:%20A%20Multi-Objective%20Algorithm%20for%20Handling%20Pareto%20Optimality%20over%20Time&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Essiet,%20Ima%20Okon&rft.date=2022-06-17&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/4418706&rft_dat=%3Cproquest_cross%3E2680910363%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680910363&rft_id=info:pmid/&rfr_iscdi=true