Loading…
E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time
Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimizat...
Saved in:
Published in: | Mathematical problems in engineering 2022-06, Vol.2022, p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Essiet, Ima Okon Sun, Yanxia Wang, Zenghui |
description | Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising. |
doi_str_mv | 10.1155/2022/4418706 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2680910363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680910363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</originalsourceid><addsrcrecordid>eNp9kM1OAjEURhujiYjufIAmLrXS_-m4IwZhEhSjmLibtJ0OlAwz2CkY3t4hsHZ1v8XJvd89ANwS_EiIEAOKKR1wTlSC5RnoESEZEoQn513GlCNC2fcluGrbFcaUCKJ64GOEiv3b53iIsix7gkP4uq2iRzOzcjb6nYPDatEEH5drWDYBTnRdVL5ewHcdXGzgbBP9Wlc-7mGzcwHO_dpdg4tSV627Oc0--HoZzZ8naDobZ8_DKbI05RFZQ1ItOVWiNMSkSjNnpDRUW0USRQ22xOJUFMYqrq3gRFDpEsV0yroPjWF9cHfcuwnNz9a1MV8121B3J3MqFU4JZpJ11MORsqFp2-DKfBO6ymGfE5wfrOUHa_nJWoffH_Glrwv96_-n_wDA3mnr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680910363</pqid></control><display><type>article</type><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><source>Wiley_OA刊</source><source>ProQuest - Publicly Available Content Database</source><creator>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui</creator><contributor>Wang, Hui ; Hui Wang</contributor><creatorcontrib>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui ; Wang, Hui ; Hui Wang</creatorcontrib><description>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/4418706</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Euclidean geometry ; Evolutionary algorithms ; Function space ; Genetic algorithms ; Multiple objective analysis ; Mutation ; Objectives ; Optimization ; Pareto optimization ; Pareto optimum ; Population ; Principal components analysis ; Solution space ; Sorting algorithms ; Systems stability</subject><ispartof>Mathematical problems in engineering, 2022-06, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Ima Okon Essiet et al.</rights><rights>Copyright © 2022 Ima Okon Essiet et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</cites><orcidid>0000-0003-3025-336X ; 0000-0002-3455-9625 ; 0000-0003-1418-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2680910363/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2680910363?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Hui</contributor><contributor>Hui Wang</contributor><creatorcontrib>Essiet, Ima Okon</creatorcontrib><creatorcontrib>Sun, Yanxia</creatorcontrib><creatorcontrib>Wang, Zenghui</creatorcontrib><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><title>Mathematical problems in engineering</title><description>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</description><subject>Euclidean geometry</subject><subject>Evolutionary algorithms</subject><subject>Function space</subject><subject>Genetic algorithms</subject><subject>Multiple objective analysis</subject><subject>Mutation</subject><subject>Objectives</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Population</subject><subject>Principal components analysis</subject><subject>Solution space</subject><subject>Sorting algorithms</subject><subject>Systems stability</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kM1OAjEURhujiYjufIAmLrXS_-m4IwZhEhSjmLibtJ0OlAwz2CkY3t4hsHZ1v8XJvd89ANwS_EiIEAOKKR1wTlSC5RnoESEZEoQn513GlCNC2fcluGrbFcaUCKJ64GOEiv3b53iIsix7gkP4uq2iRzOzcjb6nYPDatEEH5drWDYBTnRdVL5ewHcdXGzgbBP9Wlc-7mGzcwHO_dpdg4tSV627Oc0--HoZzZ8naDobZ8_DKbI05RFZQ1ItOVWiNMSkSjNnpDRUW0USRQ22xOJUFMYqrq3gRFDpEsV0yroPjWF9cHfcuwnNz9a1MV8121B3J3MqFU4JZpJ11MORsqFp2-DKfBO6ymGfE5wfrOUHa_nJWoffH_Glrwv96_-n_wDA3mnr</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Essiet, Ima Okon</creator><creator>Sun, Yanxia</creator><creator>Wang, Zenghui</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3025-336X</orcidid><orcidid>https://orcid.org/0000-0002-3455-9625</orcidid><orcidid>https://orcid.org/0000-0003-1418-6320</orcidid></search><sort><creationdate>20220617</creationdate><title>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</title><author>Essiet, Ima Okon ; Sun, Yanxia ; Wang, Zenghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Euclidean geometry</topic><topic>Evolutionary algorithms</topic><topic>Function space</topic><topic>Genetic algorithms</topic><topic>Multiple objective analysis</topic><topic>Mutation</topic><topic>Objectives</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Population</topic><topic>Principal components analysis</topic><topic>Solution space</topic><topic>Sorting algorithms</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Essiet, Ima Okon</creatorcontrib><creatorcontrib>Sun, Yanxia</creatorcontrib><creatorcontrib>Wang, Zenghui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Essiet, Ima Okon</au><au>Sun, Yanxia</au><au>Wang, Zenghui</au><au>Wang, Hui</au><au>Hui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-06-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Loss of selection pressure in the presence of many objectives is one of the pertinent problems in evolutionary optimization. Therefore, it is difficult for evolutionary algorithms to find the best-fitting candidate solutions for the final Pareto optimal front representing a multi-objective optimization problem, particularly when the solution space changes with time. In this study, we propose a multi-objective algorithm called enhanced dynamic non-dominated sorting genetic algorithm III (E-dyNSGA-III). This evolutionary algorithm is an improvement of the earlier proposed dyNSGA-III, which used principal component analysis and Euclidean distance to maintain selection pressure and integrity of the final Pareto optimal front. E-dyNSGA-III proposes a strategy to select a group of super-performing mutated candidates to improve the selection pressure at high dimensions and with changing time. This strategy is based on an earlier proposed approach on the use of mutated candidates, which are randomly chosen from the mutation and crossover stages of the original NSGA-II algorithm. In our proposed approach, these mutated candidates are used to improve the diversity of the solution space when the rate of change in the objective function space increases with respect to time. The improved algorithm is tested on RPOOT problems and a real-world hydrothermal model, and the results show that the approach is promising.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/4418706</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3025-336X</orcidid><orcidid>https://orcid.org/0000-0002-3455-9625</orcidid><orcidid>https://orcid.org/0000-0003-1418-6320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-06, Vol.2022, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2680910363 |
source | Wiley_OA刊; ProQuest - Publicly Available Content Database |
subjects | Euclidean geometry Evolutionary algorithms Function space Genetic algorithms Multiple objective analysis Mutation Objectives Optimization Pareto optimization Pareto optimum Population Principal components analysis Solution space Sorting algorithms Systems stability |
title | E-dyNSGA-III: A Multi-Objective Algorithm for Handling Pareto Optimality over Time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-dyNSGA-III:%20A%20Multi-Objective%20Algorithm%20for%20Handling%20Pareto%20Optimality%20over%20Time&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Essiet,%20Ima%20Okon&rft.date=2022-06-17&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/4418706&rft_dat=%3Cproquest_cross%3E2680910363%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-cb19a64285fb1b98a3eb66b2ac81782b0c1c095dbc84ac541526e783a93418bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2680910363&rft_id=info:pmid/&rfr_iscdi=true |