Loading…
Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms
Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery l...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meng, Yinghui Du, Zhenglong Chen, Zhao Dong, Minghao Pienta, Drew Xu, Zhihui Zhou, Weihua |
description | Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use. |
doi_str_mv | 10.48550/arxiv.2206.12300 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2681279354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681279354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613</originalsourceid><addsrcrecordid>eNpNj0trQjEUhEOhULH-gO4CXV-bnDzvUqQvELpxW-QYz5WIJja5V-y_r6VdCAPDLL4ZhrEHKabaGyOesJzjaQog7FSCEuKGjUAp2XgNcMcmte6EEGAdGKNG7HM29PmAfQyczn3B0MeceO54yCUnLN8cS08lUuVDjWnLN0RHvics6TfFdNEJazzRFZG2MW8LHuo9u-1wX2ny72O2fHlezt-axcfr-3y2aLA1oiHwRNaS0AFasuTC2ksDoZMq6OAwaKlRe0Sv9Nq11mykdsZIdzmpOivVmD3-1R5L_hqo9qtdHkq6LK7AegmuVUarH7fBVew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681279354</pqid></control><display><type>article</type><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><source>Publicly Available Content (ProQuest)</source><creator>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</creator><creatorcontrib>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</creatorcontrib><description>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2206.12300</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angiography ; Arteries ; Cardiovascular disease ; Coronary artery disease ; Coronary vessels ; Decision making ; Deep learning ; Segmentation ; Sensitivity ; Stents</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2681279354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Meng, Yinghui</creatorcontrib><creatorcontrib>Du, Zhenglong</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Pienta, Drew</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><creatorcontrib>Zhou, Weihua</creatorcontrib><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><title>arXiv.org</title><description>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</description><subject>Angiography</subject><subject>Arteries</subject><subject>Cardiovascular disease</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Segmentation</subject><subject>Sensitivity</subject><subject>Stents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNj0trQjEUhEOhULH-gO4CXV-bnDzvUqQvELpxW-QYz5WIJja5V-y_r6VdCAPDLL4ZhrEHKabaGyOesJzjaQog7FSCEuKGjUAp2XgNcMcmte6EEGAdGKNG7HM29PmAfQyczn3B0MeceO54yCUnLN8cS08lUuVDjWnLN0RHvics6TfFdNEJazzRFZG2MW8LHuo9u-1wX2ny72O2fHlezt-axcfr-3y2aLA1oiHwRNaS0AFasuTC2ksDoZMq6OAwaKlRe0Sv9Nq11mykdsZIdzmpOivVmD3-1R5L_hqo9qtdHkq6LK7AegmuVUarH7fBVew</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Meng, Yinghui</creator><creator>Du, Zhenglong</creator><creator>Chen, Zhao</creator><creator>Dong, Minghao</creator><creator>Pienta, Drew</creator><creator>Xu, Zhihui</creator><creator>Zhou, Weihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220624</creationdate><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><author>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiography</topic><topic>Arteries</topic><topic>Cardiovascular disease</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Segmentation</topic><topic>Sensitivity</topic><topic>Stents</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yinghui</creatorcontrib><creatorcontrib>Du, Zhenglong</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Pienta, Drew</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><creatorcontrib>Zhou, Weihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yinghui</au><au>Du, Zhenglong</au><au>Chen, Zhao</au><au>Dong, Minghao</au><au>Pienta, Drew</au><au>Xu, Zhihui</au><au>Zhou, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</atitle><jtitle>arXiv.org</jtitle><date>2022-06-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2206.12300</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2681279354 |
source | Publicly Available Content (ProQuest) |
subjects | Angiography Arteries Cardiovascular disease Coronary artery disease Coronary vessels Decision making Deep learning Segmentation Sensitivity Stents |
title | Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20extraction%20of%20coronary%20arteries%20using%20deep%20learning%20in%20invasive%20coronary%20angiograms&rft.jtitle=arXiv.org&rft.au=Meng,%20Yinghui&rft.date=2022-06-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2206.12300&rft_dat=%3Cproquest%3E2681279354%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681279354&rft_id=info:pmid/&rfr_iscdi=true |