Loading…

Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms

Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery l...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-06
Main Authors: Meng, Yinghui, Du, Zhenglong, Chen, Zhao, Dong, Minghao, Pienta, Drew, Xu, Zhihui, Zhou, Weihua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Meng, Yinghui
Du, Zhenglong
Chen, Zhao
Dong, Minghao
Pienta, Drew
Xu, Zhihui
Zhou, Weihua
description Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.
doi_str_mv 10.48550/arxiv.2206.12300
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2681279354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681279354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613</originalsourceid><addsrcrecordid>eNpNj0trQjEUhEOhULH-gO4CXV-bnDzvUqQvELpxW-QYz5WIJja5V-y_r6VdCAPDLL4ZhrEHKabaGyOesJzjaQog7FSCEuKGjUAp2XgNcMcmte6EEGAdGKNG7HM29PmAfQyczn3B0MeceO54yCUnLN8cS08lUuVDjWnLN0RHvics6TfFdNEJazzRFZG2MW8LHuo9u-1wX2ny72O2fHlezt-axcfr-3y2aLA1oiHwRNaS0AFasuTC2ksDoZMq6OAwaKlRe0Sv9Nq11mykdsZIdzmpOivVmD3-1R5L_hqo9qtdHkq6LK7AegmuVUarH7fBVew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681279354</pqid></control><display><type>article</type><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><source>Publicly Available Content (ProQuest)</source><creator>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</creator><creatorcontrib>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</creatorcontrib><description>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2206.12300</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Angiography ; Arteries ; Cardiovascular disease ; Coronary artery disease ; Coronary vessels ; Decision making ; Deep learning ; Segmentation ; Sensitivity ; Stents</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2681279354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Meng, Yinghui</creatorcontrib><creatorcontrib>Du, Zhenglong</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Pienta, Drew</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><creatorcontrib>Zhou, Weihua</creatorcontrib><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><title>arXiv.org</title><description>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</description><subject>Angiography</subject><subject>Arteries</subject><subject>Cardiovascular disease</subject><subject>Coronary artery disease</subject><subject>Coronary vessels</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Segmentation</subject><subject>Sensitivity</subject><subject>Stents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNj0trQjEUhEOhULH-gO4CXV-bnDzvUqQvELpxW-QYz5WIJja5V-y_r6VdCAPDLL4ZhrEHKabaGyOesJzjaQog7FSCEuKGjUAp2XgNcMcmte6EEGAdGKNG7HM29PmAfQyczn3B0MeceO54yCUnLN8cS08lUuVDjWnLN0RHvics6TfFdNEJazzRFZG2MW8LHuo9u-1wX2ny72O2fHlezt-axcfr-3y2aLA1oiHwRNaS0AFasuTC2ksDoZMq6OAwaKlRe0Sv9Nq11mykdsZIdzmpOivVmD3-1R5L_hqo9qtdHkq6LK7AegmuVUarH7fBVew</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Meng, Yinghui</creator><creator>Du, Zhenglong</creator><creator>Chen, Zhao</creator><creator>Dong, Minghao</creator><creator>Pienta, Drew</creator><creator>Xu, Zhihui</creator><creator>Zhou, Weihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220624</creationdate><title>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</title><author>Meng, Yinghui ; Du, Zhenglong ; Chen, Zhao ; Dong, Minghao ; Pienta, Drew ; Xu, Zhihui ; Zhou, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiography</topic><topic>Arteries</topic><topic>Cardiovascular disease</topic><topic>Coronary artery disease</topic><topic>Coronary vessels</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Segmentation</topic><topic>Sensitivity</topic><topic>Stents</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng, Yinghui</creatorcontrib><creatorcontrib>Du, Zhenglong</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Dong, Minghao</creatorcontrib><creatorcontrib>Pienta, Drew</creatorcontrib><creatorcontrib>Xu, Zhihui</creatorcontrib><creatorcontrib>Zhou, Weihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Yinghui</au><au>Du, Zhenglong</au><au>Chen, Zhao</au><au>Dong, Minghao</au><au>Pienta, Drew</au><au>Xu, Zhihui</au><au>Zhou, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms</atitle><jtitle>arXiv.org</jtitle><date>2022-06-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Accurate extraction of coronary arteries from invasive coronary angiography (ICA) is important in clinical decision-making for the diagnosis and risk stratification of coronary artery disease (CAD). In this study, we develop a method using deep learning to automatically extract the coronary artery lumen. Methods. A deep learning model U-Net 3+, which incorporates the full-scale skip connections and deep supervisions, was proposed for automatic extraction of coronary arteries from ICAs. Transfer learning and a hybrid loss function were employed in this novel coronary artery extraction framework. Results. A data set containing 616 ICAs obtained from 210 patients was used. In the technical evaluation, the U-Net 3+ achieved a Dice score of 0.8942 and a sensitivity of 0.8735, which is higher than U-Net ++ (Dice score: 0.8814, the sensitivity of 0.8331) and U-net (Dice score: 0.8799, the sensitivity of 0.8305). Conclusion. Our study demonstrates that the U-Net 3+ is superior to other segmentation frameworks for the automatic extraction of the coronary arteries from ICAs. This result suggests great promise for clinical use.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2206.12300</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2681279354
source Publicly Available Content (ProQuest)
subjects Angiography
Arteries
Cardiovascular disease
Coronary artery disease
Coronary vessels
Decision making
Deep learning
Segmentation
Sensitivity
Stents
title Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20extraction%20of%20coronary%20arteries%20using%20deep%20learning%20in%20invasive%20coronary%20angiograms&rft.jtitle=arXiv.org&rft.au=Meng,%20Yinghui&rft.date=2022-06-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2206.12300&rft_dat=%3Cproquest%3E2681279354%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-e28ee66e04c29e6e7cb8152cf13c4c7ac414a48aa834b7965d14755172203f613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681279354&rft_id=info:pmid/&rfr_iscdi=true