Loading…
Using Automated Seepage Meters to Quantify the Spatial Variability and Net Flux of Groundwater to a Stream
We utilized 251 measurements from a recently developed automated seepage meter (ASM) in streambeds in the Nebraska Sand Hills, USA to investigate the small‐scale spatial variability of groundwater seepage flux (q) and the ability of the ASM to estimate mean q at larger scales. Small‐scale spatial va...
Saved in:
Published in: | Water resources research 2022-06, Vol.58 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We utilized 251 measurements from a recently developed automated seepage meter (ASM) in streambeds in the Nebraska Sand Hills, USA to investigate the small‐scale spatial variability of groundwater seepage flux (q) and the ability of the ASM to estimate mean q at larger scales. Small‐scale spatial variability of q was analyzed in five dense arrays, each covering an area of 13.5–28.0 m2 (169 total point measurements). Streambed vertical hydraulic conductivity (K) was also measured. Results provided: (a) high‐resolution contour plots of q and K, (b) anisotropic semi‐variograms demonstrating greater correlation scales of q and K along the stream length than across the stream width, and (c) the number of rows of points (perpendicular to streamflow) needed to represent the groundwater flux of areas up to 28.0 m2. The findings suggest that representative streambed measurements are best conducted perpendicular to streamflow to accommodate larger seepage flux heterogeneity in this direction and minimize sampling redundancy. To investigate the ASM's ability to produce accurate mean q at larger scales, seepage meters were deployed in four stream reaches (170–890 m), arranged in three to six transects (three to eight points each) per reach across the channel. In each reach, the mean seepage flux from ASMs was compared to the seepage flux from bromide tracer dilution. Agreement between the two methods indicates the viability of a modest number of seepage meter measurements to determine the overall groundwater flux to the stream and can guide sampling for solutes and environmental tracers.
Plain Language Summary
Surface waters can be windows into groundwater aquifers. When conditions are right, groundwater is pushed up through the streambed and into the stream bringing with it natural and artificial solutes that are used as tracers for aquifer evaluation. Therefore, measurements of groundwater seepage fluxes are important. Utilizing a new tool (Solomon et al., 2020, https://doi.org/10.1029/2019WR026983) for point measurements of groundwater flux (over an area of about 10 cm2), this study makes an unprecedented number of direct discharge measurements in the Sand Hills, Nebraska, USA in both (a) small areas (13.5–28.0 m2) of streambed and (b) along a much larger (170–890 m) stream segments. The results indicate that a modest number of discharge measurements in transects perpendicular to streamflow may accurately represent the groundwater flux in both small sections of str |
---|---|
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/2021WR030711 |