Loading…

Estimation of wheat crop evapotranspiration using NDVI vegetation index

The evapotranspiration of the wheat crop grown in Tarafeni South Main Canal (TSMC) irrigation command area of West Bengal, India was estimated based on Normalized Difference Vegetation Index (NDVI) from LANDSAT images. The crop evapotranspiration (ETc) of wheat crop was estimated using the crop coef...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied and natural science 2016-03, Vol.8 (1), p.159-166
Main Authors: Adamala, Sirisha, Rajwade, Yogesh Anand, Reddy, Y.V. Krishna
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evapotranspiration of the wheat crop grown in Tarafeni South Main Canal (TSMC) irrigation command area of West Bengal, India was estimated based on Normalized Difference Vegetation Index (NDVI) from LANDSAT images. The crop evapotranspiration (ETc) of wheat crop was estimated using the crop coefficient (Kc) maps and the reference evapotranspiration (ETo) in the TSMC irrigation command area. The ETo was estimated from the well known temperature based ETo estimation method, i.e. FAO-24 modified Blaney-Criddle method using measured maximum and minimum air temperatures data during January 2011 in the command area. The Kc maps were mapped in ARC GIS software using procured LANDSAT images for the study period. The area under wheat crop was clipped from land use/land cover map generated from LANDSAT image of January, 2011 for winter season. Further, the crop evapotranspiration map was obtained by multiplying Kc map with the estimated ETo value i.e., 5.76 mm/day for a particular day. The maximum crop evapotranspiration computed for Rabi crop was 5.57 mm/ day, whereas minimum was 1.59 mm/day for the TSMC command area.
ISSN:0974-9411
2231-5209
DOI:10.31018/jans.v8i1.767