Loading…
Leveraging Language for Accelerated Learning of Tool Manipulation
Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain divers...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ren, Allen Z Govil, Bharat Tsung-Yen, Yang Narasimhan, Karthik Majumdar, Anirudha |
description | Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2681639546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681639546</sourcerecordid><originalsourceid>FETCH-proquest_journals_26816395463</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadBd102VGi6GA37_Jh34Yy9tnm-v0Z9AM6vYfn3bBESFlkdSnEjqUhTHmeC3USVSUT1rT4Rg9mdIa34EwEg1yT580woF1lwSdvEbz7HqR5R2T5A9w4RwvLSO7AthpswPTXPTvert3lns2eXhHD0k8UvVupF6oulDxXpZL_XR9lDDla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681639546</pqid></control><display><type>article</type><title>Leveraging Language for Accelerated Learning of Tool Manipulation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ren, Allen Z ; Govil, Bharat ; Tsung-Yen, Yang ; Narasimhan, Karthik ; Majumdar, Anirudha</creator><creatorcontrib>Ren, Allen Z ; Govil, Bharat ; Tsung-Yen, Yang ; Narasimhan, Karthik ; Majumdar, Anirudha</creatorcontrib><description>Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descriptions ; Learning ; Linguistics ; Policies</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2681639546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Ren, Allen Z</creatorcontrib><creatorcontrib>Govil, Bharat</creatorcontrib><creatorcontrib>Tsung-Yen, Yang</creatorcontrib><creatorcontrib>Narasimhan, Karthik</creatorcontrib><creatorcontrib>Majumdar, Anirudha</creatorcontrib><title>Leveraging Language for Accelerated Learning of Tool Manipulation</title><title>arXiv.org</title><description>Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.</description><subject>Descriptions</subject><subject>Learning</subject><subject>Linguistics</subject><subject>Policies</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadBd102VGi6GA37_Jh34Yy9tnm-v0Z9AM6vYfn3bBESFlkdSnEjqUhTHmeC3USVSUT1rT4Rg9mdIa34EwEg1yT580woF1lwSdvEbz7HqR5R2T5A9w4RwvLSO7AthpswPTXPTvert3lns2eXhHD0k8UvVupF6oulDxXpZL_XR9lDDla</recordid><startdate>20220627</startdate><enddate>20220627</enddate><creator>Ren, Allen Z</creator><creator>Govil, Bharat</creator><creator>Tsung-Yen, Yang</creator><creator>Narasimhan, Karthik</creator><creator>Majumdar, Anirudha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220627</creationdate><title>Leveraging Language for Accelerated Learning of Tool Manipulation</title><author>Ren, Allen Z ; Govil, Bharat ; Tsung-Yen, Yang ; Narasimhan, Karthik ; Majumdar, Anirudha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26816395463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Descriptions</topic><topic>Learning</topic><topic>Linguistics</topic><topic>Policies</topic><toplevel>online_resources</toplevel><creatorcontrib>Ren, Allen Z</creatorcontrib><creatorcontrib>Govil, Bharat</creatorcontrib><creatorcontrib>Tsung-Yen, Yang</creatorcontrib><creatorcontrib>Narasimhan, Karthik</creatorcontrib><creatorcontrib>Majumdar, Anirudha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Allen Z</au><au>Govil, Bharat</au><au>Tsung-Yen, Yang</au><au>Narasimhan, Karthik</au><au>Majumdar, Anirudha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging Language for Accelerated Learning of Tool Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2022-06-27</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Robust and generalized tool manipulation requires an understanding of the properties and affordances of different tools. We investigate whether linguistic information about a tool (e.g., its geometry, common uses) can help control policies adapt faster to new tools for a given task. We obtain diverse descriptions of various tools in natural language and use pre-trained language models to generate their feature representations. We then perform language-conditioned meta-learning to learn policies that can efficiently adapt to new tools given their corresponding text descriptions. Our results demonstrate that combining linguistic information and meta-learning significantly accelerates tool learning in several manipulation tasks including pushing, lifting, sweeping, and hammering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2681639546 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Descriptions Learning Linguistics Policies |
title | Leveraging Language for Accelerated Learning of Tool Manipulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20Language%20for%20Accelerated%20Learning%20of%20Tool%20Manipulation&rft.jtitle=arXiv.org&rft.au=Ren,%20Allen%20Z&rft.date=2022-06-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2681639546%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26816395463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681639546&rft_id=info:pmid/&rfr_iscdi=true |