Loading…

Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method

In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric bo...

Full description

Saved in:
Bibliographic Details
Published in:Izvestiya. Atmospheric and oceanic physics 2022-06, Vol.58 (3), p.284-294
Main Authors: Kadygrov, E. N., Knyazev, A. K., Shaposhnikov, A. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3
container_end_page 294
container_issue 3
container_start_page 284
container_title Izvestiya. Atmospheric and oceanic physics
container_volume 58
creator Kadygrov, E. N.
Knyazev, A. K.
Shaposhnikov, A. N.
description In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.
doi_str_mv 10.1134/S0001433822030070
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681849159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681849159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvBU8VzNJ2qZHEV-wi-Ku4K2k2ambZdvUJFX235ulggfxMgPfa4aPkHOglwBcXC0opSA4l4xRTmlBD8gEsixLcybfDslkT6d7_piceL-hNGeCFhNinlEPW6OcCQZ9YptkEZwK1vdrdEYnS2x7jMDgcGRMY3SctkvmqHyEW-yCT-pdEtaYzI129kt9YvKiVsa2GNwuCsPark7JUaO2Hs9-9pS83t0ubx7S2dP94831LNVQypAKKBhkUGSlbOo8F3VeZpQ2IIQEpgrINdfQSJBSCaGR1wq4RkDOC1oXUvEpuRhze2c_BvSh2tjBdfFkxfLoEyVkZVTBqIr_eu-wqXpnWuV2FdBq32j1p9HoYaPHR233ju43-X_TN9RTeEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681849159</pqid></control><display><type>article</type><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><source>Springer Nature</source><creator>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</creator><creatorcontrib>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</creatorcontrib><description>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433822030070</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Absorption coefficient ; Absorptivity ; Altitude ; Atmospheric boundary layer ; Balloons ; Boundary layers ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; High altitude ; High altitude balloons ; High-altitude environments ; Instruments ; Lower mantle ; Measuring instruments ; Mesosphere ; Meteorological balloons ; Microwave radiometers ; Microwave radiometry ; Oxygen ; Radiometry ; Remote sensing ; Satellite instruments ; Satellites ; Stratosphere ; Temperature measurement ; Temperature profile ; Temperature profiles ; Thermal stratification ; Troposphere ; Zeeman effect</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2022-06, Vol.58 (3), p.284-294</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 3, pp. 284–294. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2022, Vol. 58, No. 3, pp. 333–343.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kadygrov, E. N.</creatorcontrib><creatorcontrib>Knyazev, A. K.</creatorcontrib><creatorcontrib>Shaposhnikov, A. N.</creatorcontrib><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</description><subject>Absorption coefficient</subject><subject>Absorptivity</subject><subject>Altitude</subject><subject>Atmospheric boundary layer</subject><subject>Balloons</subject><subject>Boundary layers</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>High altitude</subject><subject>High altitude balloons</subject><subject>High-altitude environments</subject><subject>Instruments</subject><subject>Lower mantle</subject><subject>Measuring instruments</subject><subject>Mesosphere</subject><subject>Meteorological balloons</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Oxygen</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Satellite instruments</subject><subject>Satellites</subject><subject>Stratosphere</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Thermal stratification</subject><subject>Troposphere</subject><subject>Zeeman effect</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLguvoDvBU8VzNJ2qZHEV-wi-Ku4K2k2ambZdvUJFX235ulggfxMgPfa4aPkHOglwBcXC0opSA4l4xRTmlBD8gEsixLcybfDslkT6d7_piceL-hNGeCFhNinlEPW6OcCQZ9YptkEZwK1vdrdEYnS2x7jMDgcGRMY3SctkvmqHyEW-yCT-pdEtaYzI129kt9YvKiVsa2GNwuCsPark7JUaO2Hs9-9pS83t0ubx7S2dP94831LNVQypAKKBhkUGSlbOo8F3VeZpQ2IIQEpgrINdfQSJBSCaGR1wq4RkDOC1oXUvEpuRhze2c_BvSh2tjBdfFkxfLoEyVkZVTBqIr_eu-wqXpnWuV2FdBq32j1p9HoYaPHR233ju43-X_TN9RTeEw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kadygrov, E. N.</creator><creator>Knyazev, A. K.</creator><creator>Shaposhnikov, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20220601</creationdate><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><author>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption coefficient</topic><topic>Absorptivity</topic><topic>Altitude</topic><topic>Atmospheric boundary layer</topic><topic>Balloons</topic><topic>Boundary layers</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>High altitude</topic><topic>High altitude balloons</topic><topic>High-altitude environments</topic><topic>Instruments</topic><topic>Lower mantle</topic><topic>Measuring instruments</topic><topic>Mesosphere</topic><topic>Meteorological balloons</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Oxygen</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Satellite instruments</topic><topic>Satellites</topic><topic>Stratosphere</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Thermal stratification</topic><topic>Troposphere</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadygrov, E. N.</creatorcontrib><creatorcontrib>Knyazev, A. K.</creatorcontrib><creatorcontrib>Shaposhnikov, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadygrov, E. N.</au><au>Knyazev, A. K.</au><au>Shaposhnikov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>284</spage><epage>294</epage><pages>284-294</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001433822030070</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4338
ispartof Izvestiya. Atmospheric and oceanic physics, 2022-06, Vol.58 (3), p.284-294
issn 0001-4338
1555-628X
language eng
recordid cdi_proquest_journals_2681849159
source Springer Nature
subjects Absorption coefficient
Absorptivity
Altitude
Atmospheric boundary layer
Balloons
Boundary layers
Climatology
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
High altitude
High altitude balloons
High-altitude environments
Instruments
Lower mantle
Measuring instruments
Mesosphere
Meteorological balloons
Microwave radiometers
Microwave radiometry
Oxygen
Radiometry
Remote sensing
Satellite instruments
Satellites
Stratosphere
Temperature measurement
Temperature profile
Temperature profiles
Thermal stratification
Troposphere
Zeeman effect
title Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peculiarities%20of%20Stratospheric%20Temperature%20Stratification%20Measurements%20by%20the%20Microwave%20Radiometry%20Method&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Kadygrov,%20E.%20N.&rft.date=2022-06-01&rft.volume=58&rft.issue=3&rft.spage=284&rft.epage=294&rft.pages=284-294&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433822030070&rft_dat=%3Cproquest_cross%3E2681849159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681849159&rft_id=info:pmid/&rfr_iscdi=true