Loading…
Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method
In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric bo...
Saved in:
Published in: | Izvestiya. Atmospheric and oceanic physics 2022-06, Vol.58 (3), p.284-294 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3 |
container_end_page | 294 |
container_issue | 3 |
container_start_page | 284 |
container_title | Izvestiya. Atmospheric and oceanic physics |
container_volume | 58 |
creator | Kadygrov, E. N. Knyazev, A. K. Shaposhnikov, A. N. |
description | In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed. |
doi_str_mv | 10.1134/S0001433822030070 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681849159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681849159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvBU8VzNJ2qZHEV-wi-Ku4K2k2ambZdvUJFX235ulggfxMgPfa4aPkHOglwBcXC0opSA4l4xRTmlBD8gEsixLcybfDslkT6d7_piceL-hNGeCFhNinlEPW6OcCQZ9YptkEZwK1vdrdEYnS2x7jMDgcGRMY3SctkvmqHyEW-yCT-pdEtaYzI129kt9YvKiVsa2GNwuCsPark7JUaO2Hs9-9pS83t0ubx7S2dP94831LNVQypAKKBhkUGSlbOo8F3VeZpQ2IIQEpgrINdfQSJBSCaGR1wq4RkDOC1oXUvEpuRhze2c_BvSh2tjBdfFkxfLoEyVkZVTBqIr_eu-wqXpnWuV2FdBq32j1p9HoYaPHR233ju43-X_TN9RTeEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681849159</pqid></control><display><type>article</type><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><source>Springer Nature</source><creator>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</creator><creatorcontrib>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</creatorcontrib><description>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</description><identifier>ISSN: 0001-4338</identifier><identifier>EISSN: 1555-628X</identifier><identifier>DOI: 10.1134/S0001433822030070</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Absorption coefficient ; Absorptivity ; Altitude ; Atmospheric boundary layer ; Balloons ; Boundary layers ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; High altitude ; High altitude balloons ; High-altitude environments ; Instruments ; Lower mantle ; Measuring instruments ; Mesosphere ; Meteorological balloons ; Microwave radiometers ; Microwave radiometry ; Oxygen ; Radiometry ; Remote sensing ; Satellite instruments ; Satellites ; Stratosphere ; Temperature measurement ; Temperature profile ; Temperature profiles ; Thermal stratification ; Troposphere ; Zeeman effect</subject><ispartof>Izvestiya. Atmospheric and oceanic physics, 2022-06, Vol.58 (3), p.284-294</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 0001-4338, Izvestiya, Atmospheric and Oceanic Physics, 2022, Vol. 58, No. 3, pp. 284–294. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2022, Vol. 58, No. 3, pp. 333–343.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kadygrov, E. N.</creatorcontrib><creatorcontrib>Knyazev, A. K.</creatorcontrib><creatorcontrib>Shaposhnikov, A. N.</creatorcontrib><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><title>Izvestiya. Atmospheric and oceanic physics</title><addtitle>Izv. Atmos. Ocean. Phys</addtitle><description>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</description><subject>Absorption coefficient</subject><subject>Absorptivity</subject><subject>Altitude</subject><subject>Atmospheric boundary layer</subject><subject>Balloons</subject><subject>Boundary layers</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>High altitude</subject><subject>High altitude balloons</subject><subject>High-altitude environments</subject><subject>Instruments</subject><subject>Lower mantle</subject><subject>Measuring instruments</subject><subject>Mesosphere</subject><subject>Meteorological balloons</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Oxygen</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Satellite instruments</subject><subject>Satellites</subject><subject>Stratosphere</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Thermal stratification</subject><subject>Troposphere</subject><subject>Zeeman effect</subject><issn>0001-4338</issn><issn>1555-628X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLguvoDvBU8VzNJ2qZHEV-wi-Ku4K2k2ambZdvUJFX235ulggfxMgPfa4aPkHOglwBcXC0opSA4l4xRTmlBD8gEsixLcybfDslkT6d7_piceL-hNGeCFhNinlEPW6OcCQZ9YptkEZwK1vdrdEYnS2x7jMDgcGRMY3SctkvmqHyEW-yCT-pdEtaYzI129kt9YvKiVsa2GNwuCsPark7JUaO2Hs9-9pS83t0ubx7S2dP94831LNVQypAKKBhkUGSlbOo8F3VeZpQ2IIQEpgrINdfQSJBSCaGR1wq4RkDOC1oXUvEpuRhze2c_BvSh2tjBdfFkxfLoEyVkZVTBqIr_eu-wqXpnWuV2FdBq32j1p9HoYaPHR233ju43-X_TN9RTeEw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Kadygrov, E. N.</creator><creator>Knyazev, A. K.</creator><creator>Shaposhnikov, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20220601</creationdate><title>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</title><author>Kadygrov, E. N. ; Knyazev, A. K. ; Shaposhnikov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption coefficient</topic><topic>Absorptivity</topic><topic>Altitude</topic><topic>Atmospheric boundary layer</topic><topic>Balloons</topic><topic>Boundary layers</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>High altitude</topic><topic>High altitude balloons</topic><topic>High-altitude environments</topic><topic>Instruments</topic><topic>Lower mantle</topic><topic>Measuring instruments</topic><topic>Mesosphere</topic><topic>Meteorological balloons</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Oxygen</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Satellite instruments</topic><topic>Satellites</topic><topic>Stratosphere</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Thermal stratification</topic><topic>Troposphere</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadygrov, E. N.</creatorcontrib><creatorcontrib>Knyazev, A. K.</creatorcontrib><creatorcontrib>Shaposhnikov, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadygrov, E. N.</au><au>Knyazev, A. K.</au><au>Shaposhnikov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method</atitle><jtitle>Izvestiya. Atmospheric and oceanic physics</jtitle><stitle>Izv. Atmos. Ocean. Phys</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>284</spage><epage>294</epage><pages>284-294</pages><issn>0001-4338</issn><eissn>1555-628X</eissn><abstract>In this paper, we consider the peculiarities of using the microwave radiometry method for remote sensing of the thermal stratification of the high layers of the atmosphere: the stratosphere and the lower mesosphere in comparison with other high-altitude layers, the troposphere and the atmospheric boundary layer. Such peculiarities are a special choice of spectral channels and bandwidths, the use of limb geometry of measurements along with the nadir in satellite instruments, as well as taking into account the influence of the Zeeman effect. Characteristics for first-generation satellite microwave sounders that measure temperature profiles up to an altitude of 30 km, as well as for more modern ground-based and satellite instruments, the sounding altitude of which reaches 50 km with a nadir-measurement geometry and 100 km with a limb one, are given. The results obtained in experiments with high-altitude balloons and using experimental setups for measuring the absorption coefficient of molecular oxygen at nearly 60 GHz are presented. The capabilities of ground-based instruments for microwave remote sensing of the stratosphere temperature and the results of complex comparisons are also analyzed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001433822030070</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4338 |
ispartof | Izvestiya. Atmospheric and oceanic physics, 2022-06, Vol.58 (3), p.284-294 |
issn | 0001-4338 1555-628X |
language | eng |
recordid | cdi_proquest_journals_2681849159 |
source | Springer Nature |
subjects | Absorption coefficient Absorptivity Altitude Atmospheric boundary layer Balloons Boundary layers Climatology Earth and Environmental Science Earth Sciences Geophysics/Geodesy High altitude High altitude balloons High-altitude environments Instruments Lower mantle Measuring instruments Mesosphere Meteorological balloons Microwave radiometers Microwave radiometry Oxygen Radiometry Remote sensing Satellite instruments Satellites Stratosphere Temperature measurement Temperature profile Temperature profiles Thermal stratification Troposphere Zeeman effect |
title | Peculiarities of Stratospheric Temperature Stratification Measurements by the Microwave Radiometry Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peculiarities%20of%20Stratospheric%20Temperature%20Stratification%20Measurements%20by%20the%20Microwave%20Radiometry%20Method&rft.jtitle=Izvestiya.%20Atmospheric%20and%20oceanic%20physics&rft.au=Kadygrov,%20E.%20N.&rft.date=2022-06-01&rft.volume=58&rft.issue=3&rft.spage=284&rft.epage=294&rft.pages=284-294&rft.issn=0001-4338&rft.eissn=1555-628X&rft_id=info:doi/10.1134/S0001433822030070&rft_dat=%3Cproquest_cross%3E2681849159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-41721517598fb664b69500f144812a716c3c1f8188a44ce3ba13ce1e3370b78a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681849159&rft_id=info:pmid/&rfr_iscdi=true |