Loading…

The Robust Minkowski-Lyapunov Equation

The Lyapunov equation for polytopic linear inclusions over the space of Minkowski functions of nonempty compact and convex sets that contain the origin as an interior point is studied. In particular, necessary and sufficient conditions for the characterization, existence, and uniqueness of its funda...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2022-07, Vol.67 (7), p.3614-3620
Main Author: Rakovic, Sasa V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3
cites cdi_FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3
container_end_page 3620
container_issue 7
container_start_page 3614
container_title IEEE transactions on automatic control
container_volume 67
creator Rakovic, Sasa V.
description The Lyapunov equation for polytopic linear inclusions over the space of Minkowski functions of nonempty compact and convex sets that contain the origin as an interior point is studied. In particular, necessary and sufficient conditions for the characterization, existence, and uniqueness of its fundamental solution are derived.
doi_str_mv 10.1109/TAC.2021.3102472
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2681963460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508848</ieee_id><sourcerecordid>2681963460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3</originalsourceid><addsrcrecordid>eNo9kM9LAzEQhYMoWKt3wUtB8LZ1ZvJjk2MprQoVQeo5ZLcJbqubdrOr9L93S4un4cH33sDH2C3CGBHM43IyHRMQjjkCiZzO2ACl1BlJ4udsAIA6M6TVJbtKad1HJQQO2MPy04_eY9GldvRa1Zv4mzZVtti7bVfHn9Fs17m2ivU1uwjuK_mb0x2yj_lsOX3OFm9PL9PJIiuJsM2QGxNKkqLw3BlViFKsXJnzEFaogimc8hqIKPcOgXtUiqR2mucyAF_5gg_Z_XF328Rd51Nr17Fr6v6lJaXRKC4U9BQcqbKJKTU-2G1TfbtmbxHswYbtbdiDDXuy0VfujpXKe_-PGwlaC83_ACZmWVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681963460</pqid></control><display><type>article</type><title>The Robust Minkowski-Lyapunov Equation</title><source>IEEE Xplore (Online service)</source><creator>Rakovic, Sasa V.</creator><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><description>The Lyapunov equation for polytopic linear inclusions over the space of Minkowski functions of nonempty compact and convex sets that contain the origin as an interior point is studied. In particular, necessary and sufficient conditions for the characterization, existence, and uniqueness of its fundamental solution are derived.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3102472</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace electronics ; Convexity ; Dynamical systems ; Eigenvalues and eigenfunctions ; Inclusions ; Indexes ; Linear matrix inequalities ; Lyapunov methods ; Polytopic linear inclusions ; robust positive invariance ; stability ; Stability criteria</subject><ispartof>IEEE transactions on automatic control, 2022-07, Vol.67 (7), p.3614-3620</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3</citedby><cites>FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3</cites><orcidid>0000-0002-5402-0483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><title>The Robust Minkowski-Lyapunov Equation</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The Lyapunov equation for polytopic linear inclusions over the space of Minkowski functions of nonempty compact and convex sets that contain the origin as an interior point is studied. In particular, necessary and sufficient conditions for the characterization, existence, and uniqueness of its fundamental solution are derived.</description><subject>Aerospace electronics</subject><subject>Convexity</subject><subject>Dynamical systems</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Inclusions</subject><subject>Indexes</subject><subject>Linear matrix inequalities</subject><subject>Lyapunov methods</subject><subject>Polytopic linear inclusions</subject><subject>robust positive invariance</subject><subject>stability</subject><subject>Stability criteria</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LAzEQhYMoWKt3wUtB8LZ1ZvJjk2MprQoVQeo5ZLcJbqubdrOr9L93S4un4cH33sDH2C3CGBHM43IyHRMQjjkCiZzO2ACl1BlJ4udsAIA6M6TVJbtKad1HJQQO2MPy04_eY9GldvRa1Zv4mzZVtti7bVfHn9Fs17m2ivU1uwjuK_mb0x2yj_lsOX3OFm9PL9PJIiuJsM2QGxNKkqLw3BlViFKsXJnzEFaogimc8hqIKPcOgXtUiqR2mucyAF_5gg_Z_XF328Rd51Nr17Fr6v6lJaXRKC4U9BQcqbKJKTU-2G1TfbtmbxHswYbtbdiDDXuy0VfujpXKe_-PGwlaC83_ACZmWVQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Rakovic, Sasa V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid></search><sort><creationdate>20220701</creationdate><title>The Robust Minkowski-Lyapunov Equation</title><author>Rakovic, Sasa V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace electronics</topic><topic>Convexity</topic><topic>Dynamical systems</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Inclusions</topic><topic>Indexes</topic><topic>Linear matrix inequalities</topic><topic>Lyapunov methods</topic><topic>Polytopic linear inclusions</topic><topic>robust positive invariance</topic><topic>stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakovic, Sasa V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakovic, Sasa V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Robust Minkowski-Lyapunov Equation</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>67</volume><issue>7</issue><spage>3614</spage><epage>3620</epage><pages>3614-3620</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The Lyapunov equation for polytopic linear inclusions over the space of Minkowski functions of nonempty compact and convex sets that contain the origin as an interior point is studied. In particular, necessary and sufficient conditions for the characterization, existence, and uniqueness of its fundamental solution are derived.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3102472</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5402-0483</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-07, Vol.67 (7), p.3614-3620
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2681963460
source IEEE Xplore (Online service)
subjects Aerospace electronics
Convexity
Dynamical systems
Eigenvalues and eigenfunctions
Inclusions
Indexes
Linear matrix inequalities
Lyapunov methods
Polytopic linear inclusions
robust positive invariance
stability
Stability criteria
title The Robust Minkowski-Lyapunov Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Robust%20Minkowski-Lyapunov%20Equation&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Rakovic,%20Sasa%20V.&rft.date=2022-07-01&rft.volume=67&rft.issue=7&rft.spage=3614&rft.epage=3620&rft.pages=3614-3620&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3102472&rft_dat=%3Cproquest_cross%3E2681963460%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-1399fc254be3a96b4c4dac73ffd16f9ba6e802227ea103e166258a8375f03deb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681963460&rft_id=info:pmid/&rft_ieee_id=9508848&rfr_iscdi=true