Loading…

Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate

Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2022-08, Vol.51 (8), p.4456-4464
Main Authors: Dipak, Pukhrambam, Samadhiya, Anuradha, Kumar, Neeraj, Singh, Pukhrambam Akash, Tiwari, Dinesh Chandra, Verma, Udai Pratap
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3
cites cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3
container_end_page 4464
container_issue 8
container_start_page 4456
container_title Journal of electronic materials
container_volume 51
creator Dipak, Pukhrambam
Samadhiya, Anuradha
Kumar, Neeraj
Singh, Pukhrambam Akash
Tiwari, Dinesh Chandra
Verma, Udai Pratap
description Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm −1 . The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.
doi_str_mv 10.1007/s11664-022-09700-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682010609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682010609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuAl1JN0iZtLsdmpzCn-AHehTQ9cR1bU5POuX9vtYp3XhxeDrwf8CB0SskFJSS9DJQKkUSEsYjIlJBou4cGlCdxRDPxso8GJBY04izmh-gohCUhlNOMDtBHrgtfGd1WrsbO4lyHFj9AaFwdAOu67B7j3sHv8LzKYbSKz_Fc1864deNC1QKe6oAfoQ7OY9vdBFowv22Tag3tYrfCt73cL1xoFq7WLRyjA6tXAU5-dIie86un8XU0u5vejEezyLBEtpGkcQpgC5lpZkpuhaSslLLUjDIurSw0Z7KwCRChszIzZVpaozPGC2tLwSEeorO-t_HubQOhVUu38XU3qZjIGKFEENm5WO8y3oXgwarGV2vtd4oS9UVY9YRVR1h9E1bbLhT3odCZ61fwf9X_pD4Bj_eA_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682010609</pqid></control><display><type>article</type><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><source>Springer Link</source><creator>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</creator><creatorcontrib>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</creatorcontrib><description>Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm −1 . The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09700-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Characterization and Evaluation of Materials ; Chemicals ; Chemistry and Materials Science ; Electronics and Microelectronics ; Fourier transforms ; Gas sensors ; Humidity ; Infrared analysis ; Instrumentation ; Laboratories ; Materials Science ; Metal oxides ; Nanocomposites ; Nickel ferrites ; Optical and Electronic Materials ; Original Research Article ; Phosphonates ; Recovery time ; Relative humidity ; Sarin ; Scanning electron microscopy ; Sensors ; Solid State Physics ; Synthesis ; Thermogravimetric analysis ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2022-08, Vol.51 (8), p.4456-4464</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>The Minerals, Metals &amp; Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</citedby><cites>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</cites><orcidid>0000-0002-4183-1578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dipak, Pukhrambam</creatorcontrib><creatorcontrib>Samadhiya, Anuradha</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Singh, Pukhrambam Akash</creatorcontrib><creatorcontrib>Tiwari, Dinesh Chandra</creatorcontrib><creatorcontrib>Verma, Udai Pratap</creatorcontrib><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm −1 . The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</description><subject>Aluminum</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Fourier transforms</subject><subject>Gas sensors</subject><subject>Humidity</subject><subject>Infrared analysis</subject><subject>Instrumentation</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Nickel ferrites</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Phosphonates</subject><subject>Recovery time</subject><subject>Relative humidity</subject><subject>Sarin</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Solid State Physics</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuAl1JN0iZtLsdmpzCn-AHehTQ9cR1bU5POuX9vtYp3XhxeDrwf8CB0SskFJSS9DJQKkUSEsYjIlJBou4cGlCdxRDPxso8GJBY04izmh-gohCUhlNOMDtBHrgtfGd1WrsbO4lyHFj9AaFwdAOu67B7j3sHv8LzKYbSKz_Fc1864deNC1QKe6oAfoQ7OY9vdBFowv22Tag3tYrfCt73cL1xoFq7WLRyjA6tXAU5-dIie86un8XU0u5vejEezyLBEtpGkcQpgC5lpZkpuhaSslLLUjDIurSw0Z7KwCRChszIzZVpaozPGC2tLwSEeorO-t_HubQOhVUu38XU3qZjIGKFEENm5WO8y3oXgwarGV2vtd4oS9UVY9YRVR1h9E1bbLhT3odCZ61fwf9X_pD4Bj_eA_A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dipak, Pukhrambam</creator><creator>Samadhiya, Anuradha</creator><creator>Kumar, Neeraj</creator><creator>Singh, Pukhrambam Akash</creator><creator>Tiwari, Dinesh Chandra</creator><creator>Verma, Udai Pratap</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-4183-1578</orcidid></search><sort><creationdate>20220801</creationdate><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><author>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Fourier transforms</topic><topic>Gas sensors</topic><topic>Humidity</topic><topic>Infrared analysis</topic><topic>Instrumentation</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Nickel ferrites</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Phosphonates</topic><topic>Recovery time</topic><topic>Relative humidity</topic><topic>Sarin</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Solid State Physics</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dipak, Pukhrambam</creatorcontrib><creatorcontrib>Samadhiya, Anuradha</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Singh, Pukhrambam Akash</creatorcontrib><creatorcontrib>Tiwari, Dinesh Chandra</creatorcontrib><creatorcontrib>Verma, Udai Pratap</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dipak, Pukhrambam</au><au>Samadhiya, Anuradha</au><au>Kumar, Neeraj</au><au>Singh, Pukhrambam Akash</au><au>Tiwari, Dinesh Chandra</au><au>Verma, Udai Pratap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>51</volume><issue>8</issue><spage>4456</spage><epage>4464</epage><pages>4456-4464</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm −1 . The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09700-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4183-1578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-08, Vol.51 (8), p.4456-4464
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2682010609
source Springer Link
subjects Aluminum
Characterization and Evaluation of Materials
Chemicals
Chemistry and Materials Science
Electronics and Microelectronics
Fourier transforms
Gas sensors
Humidity
Infrared analysis
Instrumentation
Laboratories
Materials Science
Metal oxides
Nanocomposites
Nickel ferrites
Optical and Electronic Materials
Original Research Article
Phosphonates
Recovery time
Relative humidity
Sarin
Scanning electron microscopy
Sensors
Solid State Physics
Synthesis
Thermogravimetric analysis
X-ray diffraction
title Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Fast%20Response%20and%20Recovery%20NiFeAl3+%20Nanocomposite%20Gas%20Sensor%20for%20Detection%20of%20Dimethyl%20Methyl%20Phosphonate&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Dipak,%20Pukhrambam&rft.date=2022-08-01&rft.volume=51&rft.issue=8&rft.spage=4456&rft.epage=4464&rft.pages=4456-4464&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09700-w&rft_dat=%3Cproquest_cross%3E2682010609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682010609&rft_id=info:pmid/&rfr_iscdi=true