Loading…
Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate
Aluminium-doped nickel ferrite (NiFeAl 3+ ) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated...
Saved in:
Published in: | Journal of electronic materials 2022-08, Vol.51 (8), p.4456-4464 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3 |
container_end_page | 4464 |
container_issue | 8 |
container_start_page | 4456 |
container_title | Journal of electronic materials |
container_volume | 51 |
creator | Dipak, Pukhrambam Samadhiya, Anuradha Kumar, Neeraj Singh, Pukhrambam Akash Tiwari, Dinesh Chandra Verma, Udai Pratap |
description | Aluminium-doped nickel ferrite (NiFeAl
3+
) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm
−1
. The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite. |
doi_str_mv | 10.1007/s11664-022-09700-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682010609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682010609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuAl1JN0iZtLsdmpzCn-AHehTQ9cR1bU5POuX9vtYp3XhxeDrwf8CB0SskFJSS9DJQKkUSEsYjIlJBou4cGlCdxRDPxso8GJBY04izmh-gohCUhlNOMDtBHrgtfGd1WrsbO4lyHFj9AaFwdAOu67B7j3sHv8LzKYbSKz_Fc1864deNC1QKe6oAfoQ7OY9vdBFowv22Tag3tYrfCt73cL1xoFq7WLRyjA6tXAU5-dIie86un8XU0u5vejEezyLBEtpGkcQpgC5lpZkpuhaSslLLUjDIurSw0Z7KwCRChszIzZVpaozPGC2tLwSEeorO-t_HubQOhVUu38XU3qZjIGKFEENm5WO8y3oXgwarGV2vtd4oS9UVY9YRVR1h9E1bbLhT3odCZ61fwf9X_pD4Bj_eA_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682010609</pqid></control><display><type>article</type><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><source>Springer Link</source><creator>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</creator><creatorcontrib>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</creatorcontrib><description>Aluminium-doped nickel ferrite (NiFeAl
3+
) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm
−1
. The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09700-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Characterization and Evaluation of Materials ; Chemicals ; Chemistry and Materials Science ; Electronics and Microelectronics ; Fourier transforms ; Gas sensors ; Humidity ; Infrared analysis ; Instrumentation ; Laboratories ; Materials Science ; Metal oxides ; Nanocomposites ; Nickel ferrites ; Optical and Electronic Materials ; Original Research Article ; Phosphonates ; Recovery time ; Relative humidity ; Sarin ; Scanning electron microscopy ; Sensors ; Solid State Physics ; Synthesis ; Thermogravimetric analysis ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2022-08, Vol.51 (8), p.4456-4464</ispartof><rights>The Minerals, Metals & Materials Society 2022</rights><rights>The Minerals, Metals & Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</citedby><cites>FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</cites><orcidid>0000-0002-4183-1578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dipak, Pukhrambam</creatorcontrib><creatorcontrib>Samadhiya, Anuradha</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Singh, Pukhrambam Akash</creatorcontrib><creatorcontrib>Tiwari, Dinesh Chandra</creatorcontrib><creatorcontrib>Verma, Udai Pratap</creatorcontrib><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Aluminium-doped nickel ferrite (NiFeAl
3+
) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm
−1
. The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</description><subject>Aluminum</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemicals</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Fourier transforms</subject><subject>Gas sensors</subject><subject>Humidity</subject><subject>Infrared analysis</subject><subject>Instrumentation</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Nanocomposites</subject><subject>Nickel ferrites</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Phosphonates</subject><subject>Recovery time</subject><subject>Relative humidity</subject><subject>Sarin</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>Solid State Physics</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKd_wKuAl1JN0iZtLsdmpzCn-AHehTQ9cR1bU5POuX9vtYp3XhxeDrwf8CB0SskFJSS9DJQKkUSEsYjIlJBou4cGlCdxRDPxso8GJBY04izmh-gohCUhlNOMDtBHrgtfGd1WrsbO4lyHFj9AaFwdAOu67B7j3sHv8LzKYbSKz_Fc1864deNC1QKe6oAfoQ7OY9vdBFowv22Tag3tYrfCt73cL1xoFq7WLRyjA6tXAU5-dIie86un8XU0u5vejEezyLBEtpGkcQpgC5lpZkpuhaSslLLUjDIurSw0Z7KwCRChszIzZVpaozPGC2tLwSEeorO-t_HubQOhVUu38XU3qZjIGKFEENm5WO8y3oXgwarGV2vtd4oS9UVY9YRVR1h9E1bbLhT3odCZ61fwf9X_pD4Bj_eA_A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dipak, Pukhrambam</creator><creator>Samadhiya, Anuradha</creator><creator>Kumar, Neeraj</creator><creator>Singh, Pukhrambam Akash</creator><creator>Tiwari, Dinesh Chandra</creator><creator>Verma, Udai Pratap</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-4183-1578</orcidid></search><sort><creationdate>20220801</creationdate><title>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</title><author>Dipak, Pukhrambam ; Samadhiya, Anuradha ; Kumar, Neeraj ; Singh, Pukhrambam Akash ; Tiwari, Dinesh Chandra ; Verma, Udai Pratap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemicals</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Fourier transforms</topic><topic>Gas sensors</topic><topic>Humidity</topic><topic>Infrared analysis</topic><topic>Instrumentation</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Nanocomposites</topic><topic>Nickel ferrites</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Phosphonates</topic><topic>Recovery time</topic><topic>Relative humidity</topic><topic>Sarin</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>Solid State Physics</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dipak, Pukhrambam</creatorcontrib><creatorcontrib>Samadhiya, Anuradha</creatorcontrib><creatorcontrib>Kumar, Neeraj</creatorcontrib><creatorcontrib>Singh, Pukhrambam Akash</creatorcontrib><creatorcontrib>Tiwari, Dinesh Chandra</creatorcontrib><creatorcontrib>Verma, Udai Pratap</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dipak, Pukhrambam</au><au>Samadhiya, Anuradha</au><au>Kumar, Neeraj</au><au>Singh, Pukhrambam Akash</au><au>Tiwari, Dinesh Chandra</au><au>Verma, Udai Pratap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>51</volume><issue>8</issue><spage>4456</spage><epage>4464</epage><pages>4456-4464</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Aluminium-doped nickel ferrite (NiFeAl
3+
) nanoflakes were synthesized using the hydrothermal method. This nanocomposite material was used to fabricate a high-performance gas sensor for detecting dimethyl methylphosphonate, a stimulant of sarin gas (nerve agent). The fabricated sensor demonstrated a minimum detection limit of 0.1 ppm with a sensing response of 1.25%. The sensor was stable between temperatures of 200°C and 250°C. The sensing response decreased as the relative humidity increased. The sensor achieved response and recovery time of 24 s and 38 s, respectively, at a concentration of 1 ppm (250°C). The fabricated sensor demonstrated sensitivity of 14.654 ppm
−1
. The synthesized nanocomposite material was characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy and thermogravimetric analysis. The SEM analysis showed the formation of flakes and cube-like structures. The XRD pattern showed the crystalline nature of the nanocomposite.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09700-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4183-1578</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2022-08, Vol.51 (8), p.4456-4464 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2682010609 |
source | Springer Link |
subjects | Aluminum Characterization and Evaluation of Materials Chemicals Chemistry and Materials Science Electronics and Microelectronics Fourier transforms Gas sensors Humidity Infrared analysis Instrumentation Laboratories Materials Science Metal oxides Nanocomposites Nickel ferrites Optical and Electronic Materials Original Research Article Phosphonates Recovery time Relative humidity Sarin Scanning electron microscopy Sensors Solid State Physics Synthesis Thermogravimetric analysis X-ray diffraction |
title | Fabrication of Fast Response and Recovery NiFeAl3+ Nanocomposite Gas Sensor for Detection of Dimethyl Methyl Phosphonate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Fast%20Response%20and%20Recovery%20NiFeAl3+%20Nanocomposite%20Gas%20Sensor%20for%20Detection%20of%20Dimethyl%20Methyl%20Phosphonate&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Dipak,%20Pukhrambam&rft.date=2022-08-01&rft.volume=51&rft.issue=8&rft.spage=4456&rft.epage=4464&rft.pages=4456-4464&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09700-w&rft_dat=%3Cproquest_cross%3E2682010609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-9137eefb98a2cd5f6912d99da21259f9ba529bf4e06a8d8cd7dfca825bffd65e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682010609&rft_id=info:pmid/&rfr_iscdi=true |