Loading…
Generalized uncertainty principle and burning stars
Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears...
Saved in:
Published in: | arXiv.org 2022-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Moradpour, H Ziaie, A H Sadeghnezhad, N |
description | Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated. |
doi_str_mv | 10.48550/arxiv.2206.13940 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2682033730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682033730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63</originalsourceid><addsrcrecordid>eNotjsFKxDAURYMgOIzzAe4Krltf3mvSZCmDjsLALHQ_vKRRMpRMTVpRv96Cru5ZnXOFuJHQtEYpuOP8FT8bRNCNJNvChVghkaxNi3glNqWcAAB1h0rRStAupJB5iD-hr-bkQ544pum7GnNMPo5DqDj1lZtzium9KhPnci0u33goYfO_a_Hy-PC6far3h93z9n5fs0Koba-Qbe86Rz0xtkEbC0p6UB61BkeWtKNuAfSGtdLg0XLbGWdRsqa1uP2zjvn8MYcyHU_n5cUSPKI2CEQdAf0C8ThFKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682033730</pqid></control><display><type>article</type><title>Generalized uncertainty principle and burning stars</title><source>Publicly Available Content Database</source><creator>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</creator><creatorcontrib>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</creatorcontrib><description>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2206.13940</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>De Broglie wavelengths ; Equipartition theorem ; Parameter estimation ; Perturbation ; Principles ; Quantum gravity ; Quantum mechanics ; Quantum tunnelling ; Uncertainty principles ; Upper bounds</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2682033730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Moradpour, H</creatorcontrib><creatorcontrib>Ziaie, A H</creatorcontrib><creatorcontrib>Sadeghnezhad, N</creatorcontrib><title>Generalized uncertainty principle and burning stars</title><title>arXiv.org</title><description>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</description><subject>De Broglie wavelengths</subject><subject>Equipartition theorem</subject><subject>Parameter estimation</subject><subject>Perturbation</subject><subject>Principles</subject><subject>Quantum gravity</subject><subject>Quantum mechanics</subject><subject>Quantum tunnelling</subject><subject>Uncertainty principles</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjsFKxDAURYMgOIzzAe4Krltf3mvSZCmDjsLALHQ_vKRRMpRMTVpRv96Cru5ZnXOFuJHQtEYpuOP8FT8bRNCNJNvChVghkaxNi3glNqWcAAB1h0rRStAupJB5iD-hr-bkQ544pum7GnNMPo5DqDj1lZtzium9KhPnci0u33goYfO_a_Hy-PC6far3h93z9n5fs0Koba-Qbe86Rz0xtkEbC0p6UB61BkeWtKNuAfSGtdLg0XLbGWdRsqa1uP2zjvn8MYcyHU_n5cUSPKI2CEQdAf0C8ThFKA</recordid><startdate>20220625</startdate><enddate>20220625</enddate><creator>Moradpour, H</creator><creator>Ziaie, A H</creator><creator>Sadeghnezhad, N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220625</creationdate><title>Generalized uncertainty principle and burning stars</title><author>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>De Broglie wavelengths</topic><topic>Equipartition theorem</topic><topic>Parameter estimation</topic><topic>Perturbation</topic><topic>Principles</topic><topic>Quantum gravity</topic><topic>Quantum mechanics</topic><topic>Quantum tunnelling</topic><topic>Uncertainty principles</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Moradpour, H</creatorcontrib><creatorcontrib>Ziaie, A H</creatorcontrib><creatorcontrib>Sadeghnezhad, N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradpour, H</au><au>Ziaie, A H</au><au>Sadeghnezhad, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized uncertainty principle and burning stars</atitle><jtitle>arXiv.org</jtitle><date>2022-06-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2206.13940</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2682033730 |
source | Publicly Available Content Database |
subjects | De Broglie wavelengths Equipartition theorem Parameter estimation Perturbation Principles Quantum gravity Quantum mechanics Quantum tunnelling Uncertainty principles Upper bounds |
title | Generalized uncertainty principle and burning stars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20uncertainty%20principle%20and%20burning%20stars&rft.jtitle=arXiv.org&rft.au=Moradpour,%20H&rft.date=2022-06-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2206.13940&rft_dat=%3Cproquest%3E2682033730%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682033730&rft_id=info:pmid/&rfr_iscdi=true |