Loading…

Generalized uncertainty principle and burning stars

Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-06
Main Authors: Moradpour, H, Ziaie, A H, Sadeghnezhad, N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Moradpour, H
Ziaie, A H
Sadeghnezhad, N
description Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.
doi_str_mv 10.48550/arxiv.2206.13940
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2682033730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682033730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63</originalsourceid><addsrcrecordid>eNotjsFKxDAURYMgOIzzAe4Krltf3mvSZCmDjsLALHQ_vKRRMpRMTVpRv96Cru5ZnXOFuJHQtEYpuOP8FT8bRNCNJNvChVghkaxNi3glNqWcAAB1h0rRStAupJB5iD-hr-bkQ544pum7GnNMPo5DqDj1lZtzium9KhPnci0u33goYfO_a_Hy-PC6far3h93z9n5fs0Koba-Qbe86Rz0xtkEbC0p6UB61BkeWtKNuAfSGtdLg0XLbGWdRsqa1uP2zjvn8MYcyHU_n5cUSPKI2CEQdAf0C8ThFKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682033730</pqid></control><display><type>article</type><title>Generalized uncertainty principle and burning stars</title><source>Publicly Available Content Database</source><creator>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</creator><creatorcontrib>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</creatorcontrib><description>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2206.13940</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>De Broglie wavelengths ; Equipartition theorem ; Parameter estimation ; Perturbation ; Principles ; Quantum gravity ; Quantum mechanics ; Quantum tunnelling ; Uncertainty principles ; Upper bounds</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2682033730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Moradpour, H</creatorcontrib><creatorcontrib>Ziaie, A H</creatorcontrib><creatorcontrib>Sadeghnezhad, N</creatorcontrib><title>Generalized uncertainty principle and burning stars</title><title>arXiv.org</title><description>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</description><subject>De Broglie wavelengths</subject><subject>Equipartition theorem</subject><subject>Parameter estimation</subject><subject>Perturbation</subject><subject>Principles</subject><subject>Quantum gravity</subject><subject>Quantum mechanics</subject><subject>Quantum tunnelling</subject><subject>Uncertainty principles</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjsFKxDAURYMgOIzzAe4Krltf3mvSZCmDjsLALHQ_vKRRMpRMTVpRv96Cru5ZnXOFuJHQtEYpuOP8FT8bRNCNJNvChVghkaxNi3glNqWcAAB1h0rRStAupJB5iD-hr-bkQ544pum7GnNMPo5DqDj1lZtzium9KhPnci0u33goYfO_a_Hy-PC6far3h93z9n5fs0Koba-Qbe86Rz0xtkEbC0p6UB61BkeWtKNuAfSGtdLg0XLbGWdRsqa1uP2zjvn8MYcyHU_n5cUSPKI2CEQdAf0C8ThFKA</recordid><startdate>20220625</startdate><enddate>20220625</enddate><creator>Moradpour, H</creator><creator>Ziaie, A H</creator><creator>Sadeghnezhad, N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220625</creationdate><title>Generalized uncertainty principle and burning stars</title><author>Moradpour, H ; Ziaie, A H ; Sadeghnezhad, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>De Broglie wavelengths</topic><topic>Equipartition theorem</topic><topic>Parameter estimation</topic><topic>Perturbation</topic><topic>Principles</topic><topic>Quantum gravity</topic><topic>Quantum mechanics</topic><topic>Quantum tunnelling</topic><topic>Uncertainty principles</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Moradpour, H</creatorcontrib><creatorcontrib>Ziaie, A H</creatorcontrib><creatorcontrib>Sadeghnezhad, N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moradpour, H</au><au>Ziaie, A H</au><au>Sadeghnezhad, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized uncertainty principle and burning stars</atitle><jtitle>arXiv.org</jtitle><date>2022-06-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Gamow's theory of the implications of quantum tunneling on the star burning has two cornerstones including quantum mechanics and equipartition theorem. It has vastly been proposed that both of these foundations are affected by the existence of a non-zero minimum for length which usually appears in quantum gravity scenarios and leads to the Generalized Uncertainty principle (GUP). Mathematically, in the framework of quantum mechanics, the effects of GUP are considered as perturbation terms. Here, generalizing the de Broglie wavelength relation in the presence of minimal length, GUP correction to the Gamow's temperature is calculated and in parallel, an upper bound for the GUP parameter is estimated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2206.13940</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2682033730
source Publicly Available Content Database
subjects De Broglie wavelengths
Equipartition theorem
Parameter estimation
Perturbation
Principles
Quantum gravity
Quantum mechanics
Quantum tunnelling
Uncertainty principles
Upper bounds
title Generalized uncertainty principle and burning stars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A26%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20uncertainty%20principle%20and%20burning%20stars&rft.jtitle=arXiv.org&rft.au=Moradpour,%20H&rft.date=2022-06-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2206.13940&rft_dat=%3Cproquest%3E2682033730%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-9d52a9db7b3d3a24e689051c05c2660b3936b370b32c8a6560c29a478b921a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682033730&rft_id=info:pmid/&rfr_iscdi=true