Loading…

A viscoelastic in-plane damage model for fibrous composite materials

This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2022-07, Vol.236 (7), p.1364-1378
Main Authors: Quirino, Matheus Urzedo, Tita, Volnei, Ribeiro, Marcelo Leite
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753
cites cdi_FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753
container_end_page 1378
container_issue 7
container_start_page 1364
container_title Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications
container_volume 236
creator Quirino, Matheus Urzedo
Tita, Volnei
Ribeiro, Marcelo Leite
description This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly to the fibers or in in-plane shear. An evaluation procedure has been performed by comparing computational stress-strain curves against tensile tests curves under three different displacement rates. In addition, a calibration of the viscoelastic properties, by means of the response surface methodology, is also presented. The proposed material model has shown reasonable performance up to the material reaching an experimentally-verified modulus transition zone. Besides, the viscoelastic calibration procedure has produced a good agreement with the experimental results, concerning maximum stresses. It was observed that the computational stress-strain curve has deviated from the experimental one for higher stress values, indicating that it is necessary to improve the assessment of the nonlinear phenomena, which occur within the material.
doi_str_mv 10.1177/14644207211065090
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2682737872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_14644207211065090</sage_id><sourcerecordid>2682737872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLgWv0B3gKeu04e7WyPy_qEBS96Lmk6lSztpiZdwX9vygoexNM38D1m5mPsWsBSCMRboUutJaAUAsoCKjhhCwla5AqwPGWLmc9nwTm7iHEHAAIBF-xuzT9dtJ56EydnudvnY2_2xFszmHfig2-p550PvHNN8IfIrR9GH92UODNRcKaPl-ysS0BXP5ixt4f7181Tvn15fN6st7lVQk55IxVqpPlKpa3WBNTpSqKmVqpOl01RUlG0FhDaxlYSTCPThEoqUa2wUBm7OeaOwX8cKE71zh_CPq2sZbmSqHCVojMmjiobfIyBunoMbjDhqxZQz2XVf8pKnuXRE9PTv6n_G74B5UFnoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682737872</pqid></control><display><type>article</type><title>A viscoelastic in-plane damage model for fibrous composite materials</title><source>SAGE</source><source>IMechE Titles Via Sage</source><creator>Quirino, Matheus Urzedo ; Tita, Volnei ; Ribeiro, Marcelo Leite</creator><creatorcontrib>Quirino, Matheus Urzedo ; Tita, Volnei ; Ribeiro, Marcelo Leite</creatorcontrib><description>This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly to the fibers or in in-plane shear. An evaluation procedure has been performed by comparing computational stress-strain curves against tensile tests curves under three different displacement rates. In addition, a calibration of the viscoelastic properties, by means of the response surface methodology, is also presented. The proposed material model has shown reasonable performance up to the material reaching an experimentally-verified modulus transition zone. Besides, the viscoelastic calibration procedure has produced a good agreement with the experimental results, concerning maximum stresses. It was observed that the computational stress-strain curve has deviated from the experimental one for higher stress values, indicating that it is necessary to improve the assessment of the nonlinear phenomena, which occur within the material.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/14644207211065090</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Calibration ; Composite materials ; Damage assessment ; Fiber composites ; Nonlinear phenomena ; Response surface methodology ; Stress-strain curves ; Stress-strain relationships ; Tensile tests ; Viscoelasticity</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2022-07, Vol.236 (7), p.1364-1378</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753</citedby><cites>FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753</cites><orcidid>0000-0003-2686-2920 ; 0000-0002-8199-1162 ; 0000-0002-5586-2500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/14644207211065090$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/14644207211065090$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21913,27924,27925,45059,45447,79364</link.rule.ids></links><search><creatorcontrib>Quirino, Matheus Urzedo</creatorcontrib><creatorcontrib>Tita, Volnei</creatorcontrib><creatorcontrib>Ribeiro, Marcelo Leite</creatorcontrib><title>A viscoelastic in-plane damage model for fibrous composite materials</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><addtitle>Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications</addtitle><description>This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly to the fibers or in in-plane shear. An evaluation procedure has been performed by comparing computational stress-strain curves against tensile tests curves under three different displacement rates. In addition, a calibration of the viscoelastic properties, by means of the response surface methodology, is also presented. The proposed material model has shown reasonable performance up to the material reaching an experimentally-verified modulus transition zone. Besides, the viscoelastic calibration procedure has produced a good agreement with the experimental results, concerning maximum stresses. It was observed that the computational stress-strain curve has deviated from the experimental one for higher stress values, indicating that it is necessary to improve the assessment of the nonlinear phenomena, which occur within the material.</description><subject>Calibration</subject><subject>Composite materials</subject><subject>Damage assessment</subject><subject>Fiber composites</subject><subject>Nonlinear phenomena</subject><subject>Response surface methodology</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Tensile tests</subject><subject>Viscoelasticity</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLgWv0B3gKeu04e7WyPy_qEBS96Lmk6lSztpiZdwX9vygoexNM38D1m5mPsWsBSCMRboUutJaAUAsoCKjhhCwla5AqwPGWLmc9nwTm7iHEHAAIBF-xuzT9dtJ56EydnudvnY2_2xFszmHfig2-p550PvHNN8IfIrR9GH92UODNRcKaPl-ysS0BXP5ixt4f7181Tvn15fN6st7lVQk55IxVqpPlKpa3WBNTpSqKmVqpOl01RUlG0FhDaxlYSTCPThEoqUa2wUBm7OeaOwX8cKE71zh_CPq2sZbmSqHCVojMmjiobfIyBunoMbjDhqxZQz2XVf8pKnuXRE9PTv6n_G74B5UFnoA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Quirino, Matheus Urzedo</creator><creator>Tita, Volnei</creator><creator>Ribeiro, Marcelo Leite</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2686-2920</orcidid><orcidid>https://orcid.org/0000-0002-8199-1162</orcidid><orcidid>https://orcid.org/0000-0002-5586-2500</orcidid></search><sort><creationdate>20220701</creationdate><title>A viscoelastic in-plane damage model for fibrous composite materials</title><author>Quirino, Matheus Urzedo ; Tita, Volnei ; Ribeiro, Marcelo Leite</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Composite materials</topic><topic>Damage assessment</topic><topic>Fiber composites</topic><topic>Nonlinear phenomena</topic><topic>Response surface methodology</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Tensile tests</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirino, Matheus Urzedo</creatorcontrib><creatorcontrib>Tita, Volnei</creatorcontrib><creatorcontrib>Ribeiro, Marcelo Leite</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirino, Matheus Urzedo</au><au>Tita, Volnei</au><au>Ribeiro, Marcelo Leite</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viscoelastic in-plane damage model for fibrous composite materials</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><addtitle>Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>236</volume><issue>7</issue><spage>1364</spage><epage>1378</epage><pages>1364-1378</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>This work presents a viscoelastic in-plane damage model for fibrous composites. The material behavior is modeled as linear viscoelastic, with brittle failure in the fiber-dominated direction, and progressive degradation of the matrix-dominated properties, when the composite is loaded perpendicularly to the fibers or in in-plane shear. An evaluation procedure has been performed by comparing computational stress-strain curves against tensile tests curves under three different displacement rates. In addition, a calibration of the viscoelastic properties, by means of the response surface methodology, is also presented. The proposed material model has shown reasonable performance up to the material reaching an experimentally-verified modulus transition zone. Besides, the viscoelastic calibration procedure has produced a good agreement with the experimental results, concerning maximum stresses. It was observed that the computational stress-strain curve has deviated from the experimental one for higher stress values, indicating that it is necessary to improve the assessment of the nonlinear phenomena, which occur within the material.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/14644207211065090</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2686-2920</orcidid><orcidid>https://orcid.org/0000-0002-8199-1162</orcidid><orcidid>https://orcid.org/0000-0002-5586-2500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1464-4207
ispartof Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2022-07, Vol.236 (7), p.1364-1378
issn 1464-4207
2041-3076
language eng
recordid cdi_proquest_journals_2682737872
source SAGE; IMechE Titles Via Sage
subjects Calibration
Composite materials
Damage assessment
Fiber composites
Nonlinear phenomena
Response surface methodology
Stress-strain curves
Stress-strain relationships
Tensile tests
Viscoelasticity
title A viscoelastic in-plane damage model for fibrous composite materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viscoelastic%20in-plane%20damage%20model%20for%20fibrous%20composite%20materials&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Quirino,%20Matheus%20Urzedo&rft.date=2022-07-01&rft.volume=236&rft.issue=7&rft.spage=1364&rft.epage=1378&rft.pages=1364-1378&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/14644207211065090&rft_dat=%3Cproquest_cross%3E2682737872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-b23747e207234c44e0ef49274ed23f46b56e55dc070dbc920ab20db7323198753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682737872&rft_id=info:pmid/&rft_sage_id=10.1177_14644207211065090&rfr_iscdi=true