Loading…
An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm
More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.67940-67957 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423 |
container_end_page | 67957 |
container_issue | |
container_start_page | 67940 |
container_title | IEEE access |
container_volume | 10 |
creator | Nguyen, Trong-The Dao, Thi-Kien Nguyen, Thi-Thanh-Tan Nguyen, Trinh-Dong |
description | More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility. |
doi_str_mv | 10.1109/ACCESS.2022.3185737 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2682923550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9804492</ieee_id><doaj_id>oai_doaj_org_article_8abef659399a49dd86d50cedcb7b0deb</doaj_id><sourcerecordid>2682923550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsGh_gZsB1615P5bDULVQUdAuXIXM5LamzKMmo6C_3rQjYhZJONzv3NycLLvCaI4x0jdFWS6en-cEETKnWHFJ5Uk2IVjoGeVUnP67n2fTGHcoLZUkLifZa9Hlj_vBt7bJH3wd-m3wLikQ7OD7LuZPje06323zdTzsy3Yf-k9weRHqN9-Cgzjy_vsI5EWz7YMf3trL7GxjmwjT3_MiW98uXsr72erxblkWq1nNkBpmWAiEnMWcYC1lRZSsMEMcao4rQTmRTAtJYVMRIYFqpUjNGJYVUoojxAi9yJajr-vtzuxDGiV8md56cxT6sDU2DL5uwChbwUZwTbW2TDunhOOoBldXyc9BlbyuR6805PsHxMHs-o_QpecbIhTRhHKOUhUdq9J3xRhg89cVI3OIxIyRmEMk5jeSRF2NlAeAP0IrxFjy_QEIvIaM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682923550</pqid></control><display><type>article</type><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><source>IEEE Open Access Journals</source><creator>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</creator><creatorcontrib>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</creatorcontrib><description>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3185737</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; archimedes optimization algorithm ; Construction planning ; Costs ; Distributed generation ; Economic impact ; Generators ; improved archimedes optimization algorithm ; Machine learning ; microgrid community system ; Microgrid operations planning ; Microgrids ; Multiple objective analysis ; Optimization ; Optimization algorithms ; Planning ; Power generation ; Wind turbines</subject><ispartof>IEEE access, 2022, Vol.10, p.67940-67957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</citedby><cites>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</cites><orcidid>0000-0002-2805-652X ; 0000-0002-6963-2626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9804492$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Nguyen, Thi-Thanh-Tan</creatorcontrib><creatorcontrib>Nguyen, Trinh-Dong</creatorcontrib><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</description><subject>Algorithms</subject><subject>archimedes optimization algorithm</subject><subject>Construction planning</subject><subject>Costs</subject><subject>Distributed generation</subject><subject>Economic impact</subject><subject>Generators</subject><subject>improved archimedes optimization algorithm</subject><subject>Machine learning</subject><subject>microgrid community system</subject><subject>Microgrid operations planning</subject><subject>Microgrids</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Planning</subject><subject>Power generation</subject><subject>Wind turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsGh_gZsB1615P5bDULVQUdAuXIXM5LamzKMmo6C_3rQjYhZJONzv3NycLLvCaI4x0jdFWS6en-cEETKnWHFJ5Uk2IVjoGeVUnP67n2fTGHcoLZUkLifZa9Hlj_vBt7bJH3wd-m3wLikQ7OD7LuZPje06323zdTzsy3Yf-k9weRHqN9-Cgzjy_vsI5EWz7YMf3trL7GxjmwjT3_MiW98uXsr72erxblkWq1nNkBpmWAiEnMWcYC1lRZSsMEMcao4rQTmRTAtJYVMRIYFqpUjNGJYVUoojxAi9yJajr-vtzuxDGiV8md56cxT6sDU2DL5uwChbwUZwTbW2TDunhOOoBldXyc9BlbyuR6805PsHxMHs-o_QpecbIhTRhHKOUhUdq9J3xRhg89cVI3OIxIyRmEMk5jeSRF2NlAeAP0IrxFjy_QEIvIaM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Trong-The</creator><creator>Dao, Thi-Kien</creator><creator>Nguyen, Thi-Thanh-Tan</creator><creator>Nguyen, Trinh-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid></search><sort><creationdate>2022</creationdate><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><author>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>archimedes optimization algorithm</topic><topic>Construction planning</topic><topic>Costs</topic><topic>Distributed generation</topic><topic>Economic impact</topic><topic>Generators</topic><topic>improved archimedes optimization algorithm</topic><topic>Machine learning</topic><topic>microgrid community system</topic><topic>Microgrid operations planning</topic><topic>Microgrids</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Planning</topic><topic>Power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Nguyen, Thi-Thanh-Tan</creatorcontrib><creatorcontrib>Nguyen, Trinh-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trong-The</au><au>Dao, Thi-Kien</au><au>Nguyen, Thi-Thanh-Tan</au><au>Nguyen, Trinh-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>67940</spage><epage>67957</epage><pages>67940-67957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3185737</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.67940-67957 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2682923550 |
source | IEEE Open Access Journals |
subjects | Algorithms archimedes optimization algorithm Construction planning Costs Distributed generation Economic impact Generators improved archimedes optimization algorithm Machine learning microgrid community system Microgrid operations planning Microgrids Multiple objective analysis Optimization Optimization algorithms Planning Power generation Wind turbines |
title | An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Microgrid%20Operations%20Planning%20Using%20Improved%20Archimedes%20Optimization%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Trong-The&rft.date=2022&rft.volume=10&rft.spage=67940&rft.epage=67957&rft.pages=67940-67957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3185737&rft_dat=%3Cproquest_doaj_%3E2682923550%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682923550&rft_id=info:pmid/&rft_ieee_id=9804492&rfr_iscdi=true |