Loading…

An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm

More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.67940-67957
Main Authors: Nguyen, Trong-The, Dao, Thi-Kien, Nguyen, Thi-Thanh-Tan, Nguyen, Trinh-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423
cites cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423
container_end_page 67957
container_issue
container_start_page 67940
container_title IEEE access
container_volume 10
creator Nguyen, Trong-The
Dao, Thi-Kien
Nguyen, Thi-Thanh-Tan
Nguyen, Trinh-Dong
description More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.
doi_str_mv 10.1109/ACCESS.2022.3185737
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2682923550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9804492</ieee_id><doaj_id>oai_doaj_org_article_8abef659399a49dd86d50cedcb7b0deb</doaj_id><sourcerecordid>2682923550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRsGh_gZsB1615P5bDULVQUdAuXIXM5LamzKMmo6C_3rQjYhZJONzv3NycLLvCaI4x0jdFWS6en-cEETKnWHFJ5Uk2IVjoGeVUnP67n2fTGHcoLZUkLifZa9Hlj_vBt7bJH3wd-m3wLikQ7OD7LuZPje06323zdTzsy3Yf-k9weRHqN9-Cgzjy_vsI5EWz7YMf3trL7GxjmwjT3_MiW98uXsr72erxblkWq1nNkBpmWAiEnMWcYC1lRZSsMEMcao4rQTmRTAtJYVMRIYFqpUjNGJYVUoojxAi9yJajr-vtzuxDGiV8md56cxT6sDU2DL5uwChbwUZwTbW2TDunhOOoBldXyc9BlbyuR6805PsHxMHs-o_QpecbIhTRhHKOUhUdq9J3xRhg89cVI3OIxIyRmEMk5jeSRF2NlAeAP0IrxFjy_QEIvIaM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682923550</pqid></control><display><type>article</type><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><source>IEEE Open Access Journals</source><creator>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</creator><creatorcontrib>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</creatorcontrib><description>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3185737</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; archimedes optimization algorithm ; Construction planning ; Costs ; Distributed generation ; Economic impact ; Generators ; improved archimedes optimization algorithm ; Machine learning ; microgrid community system ; Microgrid operations planning ; Microgrids ; Multiple objective analysis ; Optimization ; Optimization algorithms ; Planning ; Power generation ; Wind turbines</subject><ispartof>IEEE access, 2022, Vol.10, p.67940-67957</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</citedby><cites>FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</cites><orcidid>0000-0002-2805-652X ; 0000-0002-6963-2626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9804492$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Nguyen, Thi-Thanh-Tan</creatorcontrib><creatorcontrib>Nguyen, Trinh-Dong</creatorcontrib><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</description><subject>Algorithms</subject><subject>archimedes optimization algorithm</subject><subject>Construction planning</subject><subject>Costs</subject><subject>Distributed generation</subject><subject>Economic impact</subject><subject>Generators</subject><subject>improved archimedes optimization algorithm</subject><subject>Machine learning</subject><subject>microgrid community system</subject><subject>Microgrid operations planning</subject><subject>Microgrids</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Planning</subject><subject>Power generation</subject><subject>Wind turbines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRsGh_gZsB1615P5bDULVQUdAuXIXM5LamzKMmo6C_3rQjYhZJONzv3NycLLvCaI4x0jdFWS6en-cEETKnWHFJ5Uk2IVjoGeVUnP67n2fTGHcoLZUkLifZa9Hlj_vBt7bJH3wd-m3wLikQ7OD7LuZPje06323zdTzsy3Yf-k9weRHqN9-Cgzjy_vsI5EWz7YMf3trL7GxjmwjT3_MiW98uXsr72erxblkWq1nNkBpmWAiEnMWcYC1lRZSsMEMcao4rQTmRTAtJYVMRIYFqpUjNGJYVUoojxAi9yJajr-vtzuxDGiV8md56cxT6sDU2DL5uwChbwUZwTbW2TDunhOOoBldXyc9BlbyuR6805PsHxMHs-o_QpecbIhTRhHKOUhUdq9J3xRhg89cVI3OIxIyRmEMk5jeSRF2NlAeAP0IrxFjy_QEIvIaM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nguyen, Trong-The</creator><creator>Dao, Thi-Kien</creator><creator>Nguyen, Thi-Thanh-Tan</creator><creator>Nguyen, Trinh-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid></search><sort><creationdate>2022</creationdate><title>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</title><author>Nguyen, Trong-The ; Dao, Thi-Kien ; Nguyen, Thi-Thanh-Tan ; Nguyen, Trinh-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>archimedes optimization algorithm</topic><topic>Construction planning</topic><topic>Costs</topic><topic>Distributed generation</topic><topic>Economic impact</topic><topic>Generators</topic><topic>improved archimedes optimization algorithm</topic><topic>Machine learning</topic><topic>microgrid community system</topic><topic>Microgrid operations planning</topic><topic>Microgrids</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Planning</topic><topic>Power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trong-The</creatorcontrib><creatorcontrib>Dao, Thi-Kien</creatorcontrib><creatorcontrib>Nguyen, Thi-Thanh-Tan</creatorcontrib><creatorcontrib>Nguyen, Trinh-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trong-The</au><au>Dao, Thi-Kien</au><au>Nguyen, Thi-Thanh-Tan</au><au>Nguyen, Trinh-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>67940</spage><epage>67957</epage><pages>67940-67957</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>More new energy sources have been incorporated into a microgrid model with parameter space growing exponentially, causing optimization scheduling as a nonlinear issue to become more complex and difficult to calculate. This study suggests an improved Archimedes optimization algorithm (IAOA) increases optimal performance for the microgrid operations planning issue. A multiobjective function about optimization planning issues is constructed with relevant economic costs and environmental profits for a microgrid community system (MCS). The IAOA is implemented based on the Archimedes optimization algorithm (AOA) by adding reverse learning and multi-directing strategies to avoid the local optimum trap when dealing with complicated situations. The experimental results of the suggested approach on the CEC2017 test suite and microgrid operations planning problem are compared to the various algorithms in the identical condition scenarios to evaluate the recommended approach performance. Compared findings reveal that the suggested IAOA outperforms the various algorithms in comparison, practical solution, and high feasibility.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3185737</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2805-652X</orcidid><orcidid>https://orcid.org/0000-0002-6963-2626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.67940-67957
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2682923550
source IEEE Open Access Journals
subjects Algorithms
archimedes optimization algorithm
Construction planning
Costs
Distributed generation
Economic impact
Generators
improved archimedes optimization algorithm
Machine learning
microgrid community system
Microgrid operations planning
Microgrids
Multiple objective analysis
Optimization
Optimization algorithms
Planning
Power generation
Wind turbines
title An Optimal Microgrid Operations Planning Using Improved Archimedes Optimization Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Microgrid%20Operations%20Planning%20Using%20Improved%20Archimedes%20Optimization%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20Trong-The&rft.date=2022&rft.volume=10&rft.spage=67940&rft.epage=67957&rft.pages=67940-67957&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3185737&rft_dat=%3Cproquest_doaj_%3E2682923550%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-16600da1521977b287b1405ec51b6352749673efb267e39882c4417b088500423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682923550&rft_id=info:pmid/&rft_ieee_id=9804492&rfr_iscdi=true