Loading…

Distribution of genus among numerical semigroups with fixed Frobenius number

A numerical semigroup is a sub-monoid of the natural numbers under addition that has a finite complement. The size of its complement is called the genus and the largest number in the complement is called its Frobenius number. We consider the set of numerical semigroups with a fixed Frobenius number...

Full description

Saved in:
Bibliographic Details
Published in:Semigroup forum 2022-06, Vol.104 (3), p.704-723
Main Author: Singhal, Deepesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043
cites cdi_FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043
container_end_page 723
container_issue 3
container_start_page 704
container_title Semigroup forum
container_volume 104
creator Singhal, Deepesh
description A numerical semigroup is a sub-monoid of the natural numbers under addition that has a finite complement. The size of its complement is called the genus and the largest number in the complement is called its Frobenius number. We consider the set of numerical semigroups with a fixed Frobenius number f and analyse their genus. We find the asymptotic distribution of genus in this set of numerical semigroups and show that it is a product of a Gaussian and a power series. We show that almost all numerical semigroups with Frobenius number f have genus close to 3 f 4 . We denote the number of numerical semigroups of Frobenius number f by N ( f ). While N ( f ) is not monotonic we prove that N ( f ) < N ( f + 2 ) for every f .
doi_str_mv 10.1007/s00233-022-10282-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2683152441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683152441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuA62jeS5u2SxmdURhwo-uQpmnNMG3GpEX9e6MV3Ll6XDj3PjiEXAK_Bs6Lm8g5CsE4IgOOJTJ5RBaQCWQIojgmC85FwaACPCVnMe54ylyKBdneuTgGV0-j8wP1Le3sMEWqez90dJh6G5zRexpt77rgp0Ok7258pa37sA1dB1_bwSU-kbUN5-Sk1ftoL37vkrys759XD2z7tHlc3W6ZEVKMLNcAbQWVyExZYgp1I_KywTpvMtS5LYw0Eltsm7IGm5dS27qoNDfQmAp5Jpbkat49BP822TiqnZ_CkF4qlKWAHLMMEoUzZYKPMdhWHYLrdfhUwNW3NTVbU8ma-rGmZCqJuRQTPHQ2_E3_0_oCldFwAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683152441</pqid></control><display><type>article</type><title>Distribution of genus among numerical semigroups with fixed Frobenius number</title><source>Springer Link</source><creator>Singhal, Deepesh</creator><creatorcontrib>Singhal, Deepesh</creatorcontrib><description>A numerical semigroup is a sub-monoid of the natural numbers under addition that has a finite complement. The size of its complement is called the genus and the largest number in the complement is called its Frobenius number. We consider the set of numerical semigroups with a fixed Frobenius number f and analyse their genus. We find the asymptotic distribution of genus in this set of numerical semigroups and show that it is a product of a Gaussian and a power series. We show that almost all numerical semigroups with Frobenius number f have genus close to 3 f 4 . We denote the number of numerical semigroups of Frobenius number f by N ( f ). While N ( f ) is not monotonic we prove that N ( f ) &lt; N ( f + 2 ) for every f .</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-022-10282-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Complement ; Mathematics ; Mathematics and Statistics ; Monoids ; Number theory ; Power series ; Research Article ; Semigroups</subject><ispartof>Semigroup forum, 2022-06, Vol.104 (3), p.704-723</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043</citedby><cites>FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singhal, Deepesh</creatorcontrib><title>Distribution of genus among numerical semigroups with fixed Frobenius number</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>A numerical semigroup is a sub-monoid of the natural numbers under addition that has a finite complement. The size of its complement is called the genus and the largest number in the complement is called its Frobenius number. We consider the set of numerical semigroups with a fixed Frobenius number f and analyse their genus. We find the asymptotic distribution of genus in this set of numerical semigroups and show that it is a product of a Gaussian and a power series. We show that almost all numerical semigroups with Frobenius number f have genus close to 3 f 4 . We denote the number of numerical semigroups of Frobenius number f by N ( f ). While N ( f ) is not monotonic we prove that N ( f ) &lt; N ( f + 2 ) for every f .</description><subject>Algebra</subject><subject>Complement</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Number theory</subject><subject>Power series</subject><subject>Research Article</subject><subject>Semigroups</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuA62jeS5u2SxmdURhwo-uQpmnNMG3GpEX9e6MV3Ll6XDj3PjiEXAK_Bs6Lm8g5CsE4IgOOJTJ5RBaQCWQIojgmC85FwaACPCVnMe54ylyKBdneuTgGV0-j8wP1Le3sMEWqez90dJh6G5zRexpt77rgp0Ok7258pa37sA1dB1_bwSU-kbUN5-Sk1ftoL37vkrys759XD2z7tHlc3W6ZEVKMLNcAbQWVyExZYgp1I_KywTpvMtS5LYw0Eltsm7IGm5dS27qoNDfQmAp5Jpbkat49BP822TiqnZ_CkF4qlKWAHLMMEoUzZYKPMdhWHYLrdfhUwNW3NTVbU8ma-rGmZCqJuRQTPHQ2_E3_0_oCldFwAQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Singhal, Deepesh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Distribution of genus among numerical semigroups with fixed Frobenius number</title><author>Singhal, Deepesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Complement</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Number theory</topic><topic>Power series</topic><topic>Research Article</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singhal, Deepesh</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singhal, Deepesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of genus among numerical semigroups with fixed Frobenius number</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>104</volume><issue>3</issue><spage>704</spage><epage>723</epage><pages>704-723</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>A numerical semigroup is a sub-monoid of the natural numbers under addition that has a finite complement. The size of its complement is called the genus and the largest number in the complement is called its Frobenius number. We consider the set of numerical semigroups with a fixed Frobenius number f and analyse their genus. We find the asymptotic distribution of genus in this set of numerical semigroups and show that it is a product of a Gaussian and a power series. We show that almost all numerical semigroups with Frobenius number f have genus close to 3 f 4 . We denote the number of numerical semigroups of Frobenius number f by N ( f ). While N ( f ) is not monotonic we prove that N ( f ) &lt; N ( f + 2 ) for every f .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-022-10282-6</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2022-06, Vol.104 (3), p.704-723
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_2683152441
source Springer Link
subjects Algebra
Complement
Mathematics
Mathematics and Statistics
Monoids
Number theory
Power series
Research Article
Semigroups
title Distribution of genus among numerical semigroups with fixed Frobenius number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20genus%20among%20numerical%20semigroups%20with%20fixed%20Frobenius%20number&rft.jtitle=Semigroup%20forum&rft.au=Singhal,%20Deepesh&rft.date=2022-06-01&rft.volume=104&rft.issue=3&rft.spage=704&rft.epage=723&rft.pages=704-723&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-022-10282-6&rft_dat=%3Cproquest_cross%3E2683152441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-5a11f91934c882a11bd358d2b5d42a5e7c6c62f2fd8b1e586aeb79a0c1dc92043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683152441&rft_id=info:pmid/&rfr_iscdi=true