Loading…

Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics

Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey allo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2022-07, Vol.10 (13), p.n/a
Main Authors: Hao, Qiaoyan, Yi, Huan, Liu, Jidong, Wang, Yi, Chen, Jiewei, Yin, Xinmao, Tang, Chi Sin, Qi, Dianyu, Gan, Haibo, Wee, Andrew T. S., Chai, Yang, Zhang, Wenjing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 13
container_start_page
container_title Advanced optical materials
container_volume 10
creator Hao, Qiaoyan
Yi, Huan
Liu, Jidong
Wang, Yi
Chen, Jiewei
Yin, Xinmao
Tang, Chi Sin
Qi, Dianyu
Gan, Haibo
Wee, Andrew T. S.
Chai, Yang
Zhang, Wenjing
description Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics. This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.
doi_str_mv 10.1002/adom.202200063
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2683887244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683887244</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhYMoWLRb1wOuU-cnmUyWtVZbqFRoXQ-TzE1MSZM4SbHZuXThQnwXX8OH6JM4tVJ1de85fOfCPY5zRnCPYEwvlC6XPYopxRhzduB0KAl9l-CAHP7Zj51uXS8sYgULvaDjvF6qQqeqQsMizQoAkxUpKhM0B1Mo06LPj83z27iYAdm8vK9na2Tx_2Y7hxbNbCwHNDBt3ai8Rklp0ChLHyx3B8aqpSpiQMMc4saURRbX34emVVPCr3fqHCU2Dd2feeLcXw_ng5E7md6MB_2JW1HGmBtpEBAKHiUce37ME19oGmIFMSeERJgRH2IvIoJBAFxpDhxIRDUWsY58TdiJc767W5nycQV1Ixflyv6b15JywYQIqOdZKtxRT1kOraxMtrSNSILltnG5bVzuG5f9q-ntXrEvR9V_DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683887244</pqid></control><display><type>article</type><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</creator><creatorcontrib>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</creatorcontrib><description>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics. This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202200063</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying ; Alloys ; bandgap engineering ; Density functional theory ; electron mobility ; Electronics ; Energy gap ; indium selenide ; Layered materials ; Materials science ; Multilayers ; Optical properties ; Optics ; Optoelectronics ; photodetectors ; Photoluminescence ; Raman spectra ; Silicon dioxide ; Single crystals ; Structural integrity ; Substrates ; Transistors</subject><ispartof>Advanced optical materials, 2022-07, Vol.10 (13), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6931-900X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hao, Qiaoyan</creatorcontrib><creatorcontrib>Yi, Huan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Qi, Dianyu</creatorcontrib><creatorcontrib>Gan, Haibo</creatorcontrib><creatorcontrib>Wee, Andrew T. S.</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><title>Advanced optical materials</title><description>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics. This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</description><subject>Alloying</subject><subject>Alloys</subject><subject>bandgap engineering</subject><subject>Density functional theory</subject><subject>electron mobility</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>indium selenide</subject><subject>Layered materials</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>photodetectors</subject><subject>Photoluminescence</subject><subject>Raman spectra</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Structural integrity</subject><subject>Substrates</subject><subject>Transistors</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Kw0AUhYMoWLRb1wOuU-cnmUyWtVZbqFRoXQ-TzE1MSZM4SbHZuXThQnwXX8OH6JM4tVJ1de85fOfCPY5zRnCPYEwvlC6XPYopxRhzduB0KAl9l-CAHP7Zj51uXS8sYgULvaDjvF6qQqeqQsMizQoAkxUpKhM0B1Mo06LPj83z27iYAdm8vK9na2Tx_2Y7hxbNbCwHNDBt3ai8Rklp0ChLHyx3B8aqpSpiQMMc4saURRbX34emVVPCr3fqHCU2Dd2feeLcXw_ng5E7md6MB_2JW1HGmBtpEBAKHiUce37ME19oGmIFMSeERJgRH2IvIoJBAFxpDhxIRDUWsY58TdiJc767W5nycQV1Ixflyv6b15JywYQIqOdZKtxRT1kOraxMtrSNSILltnG5bVzuG5f9q-ntXrEvR9V_DQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hao, Qiaoyan</creator><creator>Yi, Huan</creator><creator>Liu, Jidong</creator><creator>Wang, Yi</creator><creator>Chen, Jiewei</creator><creator>Yin, Xinmao</creator><creator>Tang, Chi Sin</creator><creator>Qi, Dianyu</creator><creator>Gan, Haibo</creator><creator>Wee, Andrew T. S.</creator><creator>Chai, Yang</creator><creator>Zhang, Wenjing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></search><sort><creationdate>20220701</creationdate><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><author>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>bandgap engineering</topic><topic>Density functional theory</topic><topic>electron mobility</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>indium selenide</topic><topic>Layered materials</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>photodetectors</topic><topic>Photoluminescence</topic><topic>Raman spectra</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Structural integrity</topic><topic>Substrates</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao, Qiaoyan</creatorcontrib><creatorcontrib>Yi, Huan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Qi, Dianyu</creatorcontrib><creatorcontrib>Gan, Haibo</creatorcontrib><creatorcontrib>Wee, Andrew T. S.</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Qiaoyan</au><au>Yi, Huan</au><au>Liu, Jidong</au><au>Wang, Yi</au><au>Chen, Jiewei</au><au>Yin, Xinmao</au><au>Tang, Chi Sin</au><au>Qi, Dianyu</au><au>Gan, Haibo</au><au>Wee, Andrew T. S.</au><au>Chai, Yang</au><au>Zhang, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</atitle><jtitle>Advanced optical materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>10</volume><issue>13</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics. This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202200063</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2022-07, Vol.10 (13), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2683887244
source Wiley-Blackwell Read & Publish Collection
subjects Alloying
Alloys
bandgap engineering
Density functional theory
electron mobility
Electronics
Energy gap
indium selenide
Layered materials
Materials science
Multilayers
Optical properties
Optics
Optoelectronics
photodetectors
Photoluminescence
Raman spectra
Silicon dioxide
Single crystals
Structural integrity
Substrates
Transistors
title Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20Engineering%20of%20Ternary%20%CE%B5%E2%80%90InSe1%E2%88%92xSx%20and%20%CE%B5%E2%80%90InSe1%E2%88%92yTey%20Single%20Crystals%20for%20High%E2%80%90Performance%20Electronics%20and%20Optoelectronics&rft.jtitle=Advanced%20optical%20materials&rft.au=Hao,%20Qiaoyan&rft.date=2022-07-01&rft.volume=10&rft.issue=13&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202200063&rft_dat=%3Cproquest_wiley%3E2683887244%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683887244&rft_id=info:pmid/&rfr_iscdi=true