Loading…
Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics
Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey allo...
Saved in:
Published in: | Advanced optical materials 2022-07, Vol.10 (13), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 13 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 10 |
creator | Hao, Qiaoyan Yi, Huan Liu, Jidong Wang, Yi Chen, Jiewei Yin, Xinmao Tang, Chi Sin Qi, Dianyu Gan, Haibo Wee, Andrew T. S. Chai, Yang Zhang, Wenjing |
description | Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics.
This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices. |
doi_str_mv | 10.1002/adom.202200063 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2683887244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683887244</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13</originalsourceid><addsrcrecordid>eNpVkM1Kw0AUhYMoWLRb1wOuU-cnmUyWtVZbqFRoXQ-TzE1MSZM4SbHZuXThQnwXX8OH6JM4tVJ1de85fOfCPY5zRnCPYEwvlC6XPYopxRhzduB0KAl9l-CAHP7Zj51uXS8sYgULvaDjvF6qQqeqQsMizQoAkxUpKhM0B1Mo06LPj83z27iYAdm8vK9na2Tx_2Y7hxbNbCwHNDBt3ai8Rklp0ChLHyx3B8aqpSpiQMMc4saURRbX34emVVPCr3fqHCU2Dd2feeLcXw_ng5E7md6MB_2JW1HGmBtpEBAKHiUce37ME19oGmIFMSeERJgRH2IvIoJBAFxpDhxIRDUWsY58TdiJc767W5nycQV1Ixflyv6b15JywYQIqOdZKtxRT1kOraxMtrSNSILltnG5bVzuG5f9q-ntXrEvR9V_DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2683887244</pqid></control><display><type>article</type><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</creator><creatorcontrib>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</creatorcontrib><description>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics.
This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202200063</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying ; Alloys ; bandgap engineering ; Density functional theory ; electron mobility ; Electronics ; Energy gap ; indium selenide ; Layered materials ; Materials science ; Multilayers ; Optical properties ; Optics ; Optoelectronics ; photodetectors ; Photoluminescence ; Raman spectra ; Silicon dioxide ; Single crystals ; Structural integrity ; Substrates ; Transistors</subject><ispartof>Advanced optical materials, 2022-07, Vol.10 (13), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6931-900X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hao, Qiaoyan</creatorcontrib><creatorcontrib>Yi, Huan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Qi, Dianyu</creatorcontrib><creatorcontrib>Gan, Haibo</creatorcontrib><creatorcontrib>Wee, Andrew T. S.</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><title>Advanced optical materials</title><description>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics.
This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</description><subject>Alloying</subject><subject>Alloys</subject><subject>bandgap engineering</subject><subject>Density functional theory</subject><subject>electron mobility</subject><subject>Electronics</subject><subject>Energy gap</subject><subject>indium selenide</subject><subject>Layered materials</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>photodetectors</subject><subject>Photoluminescence</subject><subject>Raman spectra</subject><subject>Silicon dioxide</subject><subject>Single crystals</subject><subject>Structural integrity</subject><subject>Substrates</subject><subject>Transistors</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkM1Kw0AUhYMoWLRb1wOuU-cnmUyWtVZbqFRoXQ-TzE1MSZM4SbHZuXThQnwXX8OH6JM4tVJ1de85fOfCPY5zRnCPYEwvlC6XPYopxRhzduB0KAl9l-CAHP7Zj51uXS8sYgULvaDjvF6qQqeqQsMizQoAkxUpKhM0B1Mo06LPj83z27iYAdm8vK9na2Tx_2Y7hxbNbCwHNDBt3ai8Rklp0ChLHyx3B8aqpSpiQMMc4saURRbX34emVVPCr3fqHCU2Dd2feeLcXw_ng5E7md6MB_2JW1HGmBtpEBAKHiUce37ME19oGmIFMSeERJgRH2IvIoJBAFxpDhxIRDUWsY58TdiJc767W5nycQV1Ixflyv6b15JywYQIqOdZKtxRT1kOraxMtrSNSILltnG5bVzuG5f9q-ntXrEvR9V_DQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Hao, Qiaoyan</creator><creator>Yi, Huan</creator><creator>Liu, Jidong</creator><creator>Wang, Yi</creator><creator>Chen, Jiewei</creator><creator>Yin, Xinmao</creator><creator>Tang, Chi Sin</creator><creator>Qi, Dianyu</creator><creator>Gan, Haibo</creator><creator>Wee, Andrew T. S.</creator><creator>Chai, Yang</creator><creator>Zhang, Wenjing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></search><sort><creationdate>20220701</creationdate><title>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</title><author>Hao, Qiaoyan ; Yi, Huan ; Liu, Jidong ; Wang, Yi ; Chen, Jiewei ; Yin, Xinmao ; Tang, Chi Sin ; Qi, Dianyu ; Gan, Haibo ; Wee, Andrew T. S. ; Chai, Yang ; Zhang, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>bandgap engineering</topic><topic>Density functional theory</topic><topic>electron mobility</topic><topic>Electronics</topic><topic>Energy gap</topic><topic>indium selenide</topic><topic>Layered materials</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>photodetectors</topic><topic>Photoluminescence</topic><topic>Raman spectra</topic><topic>Silicon dioxide</topic><topic>Single crystals</topic><topic>Structural integrity</topic><topic>Substrates</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao, Qiaoyan</creatorcontrib><creatorcontrib>Yi, Huan</creatorcontrib><creatorcontrib>Liu, Jidong</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Yin, Xinmao</creatorcontrib><creatorcontrib>Tang, Chi Sin</creatorcontrib><creatorcontrib>Qi, Dianyu</creatorcontrib><creatorcontrib>Gan, Haibo</creatorcontrib><creatorcontrib>Wee, Andrew T. S.</creatorcontrib><creatorcontrib>Chai, Yang</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Qiaoyan</au><au>Yi, Huan</au><au>Liu, Jidong</au><au>Wang, Yi</au><au>Chen, Jiewei</au><au>Yin, Xinmao</au><au>Tang, Chi Sin</au><au>Qi, Dianyu</au><au>Gan, Haibo</au><au>Wee, Andrew T. S.</au><au>Chai, Yang</au><au>Zhang, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics</atitle><jtitle>Advanced optical materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>10</volume><issue>13</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Alloying offers an efficient strategy to tune the bandgap of two‐dimensional (2D) layered materials, enabling them to tailor the optical and electronic attributes without compromising the structural integrity. Here the authors report the synthesis of a series of ternary InSe1−xSx and InSe1−yTey alloys possessing ε‐polymorph and single crystalline structure. Both the photoluminescence and Raman spectra of multilayer InSe1−xSx and InSe1−yTey demonstrate that an effective modulation of bandgap and concomitant optical properties is achieved by tuning the alloy compositions, consistent with density functional theory calculations. Field‐effect transistors fabricated from the multilayer alloys on SiO2 dielectric substrates display electron field‐effect mobilities of up to ≈127 cm2 V−1 s−1. All the multilayer alloy devices show a high current on/off ratio of ≈108. When fabricated into photodetectors, multilayer InSe0.9S0.1 and InSe0.9Te0.1 exhibit maximum photoresponsivities of 5.4 × 105 and 7.7 × 104 A W−1, respectively. Moreover, the InSe1−yTey alloys are able to expand the photoresponse range into 1250 nm due to the bandgap narrowing upon Te alloying. This work sheds light on rationally designing 2D layered InSe with tunable bandgaps via alloying, and demonstrates their promising applications in electronics and optoelectronics.
This paper reports an alloying strategy to prepare single crystals of InSe1−xSx and InSe1−yTey with continuously tunable bandgaps. The ternary alloys are fabricated into field‐effect transistors, exhibiting competitive electronic and optoelectronic performance. This work provides additional degree of freedom for tuning the optical and electrical properties of InSe, and illustrates their potential applications in high‐performance electronic and optoelectronic devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202200063</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6931-900X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2022-07, Vol.10 (13), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2683887244 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alloying Alloys bandgap engineering Density functional theory electron mobility Electronics Energy gap indium selenide Layered materials Materials science Multilayers Optical properties Optics Optoelectronics photodetectors Photoluminescence Raman spectra Silicon dioxide Single crystals Structural integrity Substrates Transistors |
title | Bandgap Engineering of Ternary ε‐InSe1−xSx and ε‐InSe1−yTey Single Crystals for High‐Performance Electronics and Optoelectronics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20Engineering%20of%20Ternary%20%CE%B5%E2%80%90InSe1%E2%88%92xSx%20and%20%CE%B5%E2%80%90InSe1%E2%88%92yTey%20Single%20Crystals%20for%20High%E2%80%90Performance%20Electronics%20and%20Optoelectronics&rft.jtitle=Advanced%20optical%20materials&rft.au=Hao,%20Qiaoyan&rft.date=2022-07-01&rft.volume=10&rft.issue=13&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202200063&rft_dat=%3Cproquest_wiley%3E2683887244%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2333-bde8e986bf6045c6f58d290aec6111b0315ec4b183e7e6ad6e6e1b2d08cdb5d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2683887244&rft_id=info:pmid/&rfr_iscdi=true |