Loading…

Disorder-Assisted Assembly of Strongly Correlated Fluids of Light

Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Saxberg, Brendan, Vrajitoarea, Andrei, Roberts, Gabrielle, Panetta, Margaret G, Simon, Jonathan, Schuster, David I
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Saxberg, Brendan
Vrajitoarea, Andrei
Roberts, Gabrielle
Panetta, Margaret G
Simon, Jonathan
Schuster, David I
description Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known & localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.
doi_str_mv 10.48550/arxiv.2207.00577
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2684780933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684780933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a523-37d83072b3dc11d01cb4398e67bf98be609fcfb893fffe5dbae630fcf93e05243</originalsourceid><addsrcrecordid>eNotjcFKxDAURYMgOIzzAe4Krltf30uaZFmqo0LBhbMfmiYZO9SJJq3o39tBV_dwD9zL2E0JBVdCwF0Xv4evAhFkASCkvGArJCpzxRGv2CalIwBgJVEIWrH6fkghWhfzOqUhTc5mC7h3M_5kwWevUwynw8JNiNGN3dlvx3mw6Wzb4fA2XbNL343Jbf5zzXbbh13zlLcvj89N3eadQMpJWkUg0ZDty9JC2RtOWrlKGq-VcRVo33ujNHnvnbCmcxXBUmlyIJDTmt3-zX7E8Dm7NO2PYY6n5XGPleJSgSaiX9MRS6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684780933</pqid></control><display><type>article</type><title>Disorder-Assisted Assembly of Strongly Correlated Fluids of Light</title><source>Publicly Available Content Database</source><creator>Saxberg, Brendan ; Vrajitoarea, Andrei ; Roberts, Gabrielle ; Panetta, Margaret G ; Simon, Jonathan ; Schuster, David I</creator><creatorcontrib>Saxberg, Brendan ; Vrajitoarea, Andrei ; Roberts, Gabrielle ; Panetta, Margaret G ; Simon, Jonathan ; Schuster, David I</creatorcontrib><description>Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known &amp; localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2207.00577</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic flow ; Assembly ; Circuits ; Eigenvectors ; Photons ; Quantum computing ; Quantum entanglement ; Reservoir engineering</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2684780933?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Saxberg, Brendan</creatorcontrib><creatorcontrib>Vrajitoarea, Andrei</creatorcontrib><creatorcontrib>Roberts, Gabrielle</creatorcontrib><creatorcontrib>Panetta, Margaret G</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><title>Disorder-Assisted Assembly of Strongly Correlated Fluids of Light</title><title>arXiv.org</title><description>Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known &amp; localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.</description><subject>Adiabatic flow</subject><subject>Assembly</subject><subject>Circuits</subject><subject>Eigenvectors</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Reservoir engineering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjcFKxDAURYMgOIzzAe4Krltf30uaZFmqo0LBhbMfmiYZO9SJJq3o39tBV_dwD9zL2E0JBVdCwF0Xv4evAhFkASCkvGArJCpzxRGv2CalIwBgJVEIWrH6fkghWhfzOqUhTc5mC7h3M_5kwWevUwynw8JNiNGN3dlvx3mw6Wzb4fA2XbNL343Jbf5zzXbbh13zlLcvj89N3eadQMpJWkUg0ZDty9JC2RtOWrlKGq-VcRVo33ujNHnvnbCmcxXBUmlyIJDTmt3-zX7E8Dm7NO2PYY6n5XGPleJSgSaiX9MRS6g</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Saxberg, Brendan</creator><creator>Vrajitoarea, Andrei</creator><creator>Roberts, Gabrielle</creator><creator>Panetta, Margaret G</creator><creator>Simon, Jonathan</creator><creator>Schuster, David I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>Disorder-Assisted Assembly of Strongly Correlated Fluids of Light</title><author>Saxberg, Brendan ; Vrajitoarea, Andrei ; Roberts, Gabrielle ; Panetta, Margaret G ; Simon, Jonathan ; Schuster, David I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a523-37d83072b3dc11d01cb4398e67bf98be609fcfb893fffe5dbae630fcf93e05243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adiabatic flow</topic><topic>Assembly</topic><topic>Circuits</topic><topic>Eigenvectors</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Reservoir engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Saxberg, Brendan</creatorcontrib><creatorcontrib>Vrajitoarea, Andrei</creatorcontrib><creatorcontrib>Roberts, Gabrielle</creatorcontrib><creatorcontrib>Panetta, Margaret G</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxberg, Brendan</au><au>Vrajitoarea, Andrei</au><au>Roberts, Gabrielle</au><au>Panetta, Margaret G</au><au>Simon, Jonathan</au><au>Schuster, David I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder-Assisted Assembly of Strongly Correlated Fluids of Light</atitle><jtitle>arXiv.org</jtitle><date>2022-07-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation to many-body physics and quantum-enhanced metrology. Approaches to solving this problem include step-by-step assembly, reservoir engineering to irreversibly pump towards a target state, and adiabatic evolution from a known initial state. Here we construct low-entropy quantum fluids of light in a Bose Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice where the eigenstates are known &amp; localized, then adiabatically remove this disorder, allowing quantum fluctuations to melt the photons into a fluid. Using our plat-form, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multi-particle strongly correlated fluids. Inter-site entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, while two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new possibilities for preparation of topological and otherwise exotic phases of synthetic matter.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2207.00577</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2684780933
source Publicly Available Content Database
subjects Adiabatic flow
Assembly
Circuits
Eigenvectors
Photons
Quantum computing
Quantum entanglement
Reservoir engineering
title Disorder-Assisted Assembly of Strongly Correlated Fluids of Light
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder-Assisted%20Assembly%20of%20Strongly%20Correlated%20Fluids%20of%20Light&rft.jtitle=arXiv.org&rft.au=Saxberg,%20Brendan&rft.date=2022-07-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2207.00577&rft_dat=%3Cproquest%3E2684780933%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a523-37d83072b3dc11d01cb4398e67bf98be609fcfb893fffe5dbae630fcf93e05243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2684780933&rft_id=info:pmid/&rfr_iscdi=true