Loading…
A Three-Level Radial Basis Function Method for Expensive Optimization
This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to...
Saved in:
Published in: | IEEE transactions on cybernetics 2022-07, Vol.PP (7), p.1-12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2021.3061420 |