Loading…
Graphs with a unique maximum independent set up to automorphisms
If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Su...
Saved in:
Published in: | Discrete Applied Mathematics 2022-08, Vol.317, p.124-135 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3 |
container_end_page | 135 |
container_issue | |
container_start_page | 124 |
container_title | Discrete Applied Mathematics |
container_volume | 317 |
creator | Brešar, Boštjan Dravec, Tanja Gorzkowska, Aleksandra Kleszcz, Elżbieta |
description | If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|. |
doi_str_mv | 10.1016/j.dam.2022.04.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685585671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X22001251</els_id><sourcerecordid>2685585671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4Cnltnsm2TxYuy6CoseFHwFtIkZVPsh0nqx39vlnr2MsPAe28eP0IuEXIErK7b3KguZ8BYDkUOsDoiCxScZRXneEwWSVNlDMXbKTkLoQUATNeC3G69GveBfrm4p4pOvfuYLO3Ut-umjrre2NGm0UcabKTTSONA1RSHbvDj3oUunJOTRr0He_G3l-T14f5l85jtnrdPm7tdphnwmLFGYwWK19pwRM01LxoldFELA3VdcTRMGQF8zUpAtcaVKLCGda1KYGna1ZJczbmjH1LFEGU7TL5PLyWrRFmKMoUkFc4q7YcQvG3k6F2n_I9EkAdQspUJlDyAklDIBCp5bmaPTfU_nfUyaGd7bY3zVkdpBveP-xc2Z3BD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685585671</pqid></control><display><type>article</type><title>Graphs with a unique maximum independent set up to automorphisms</title><source>Elsevier</source><creator>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</creator><creatorcontrib>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</creatorcontrib><description>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2022.04.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Apexes ; Automorphisms ; Cartesian coordinates ; Cartesian product ; Chordal graph ; Deletion ; Graph automorphism ; Graph theory ; Graphs ; Maximum independent set ; Polynomials ; Tree ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2022-08, Vol.317, p.124-135</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</cites><orcidid>0000-0001-5335-7351 ; 0000-0002-1413-2413 ; 0000-0003-0540-0938 ; 0000-0001-8471-4796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dravec, Tanja</creatorcontrib><creatorcontrib>Gorzkowska, Aleksandra</creatorcontrib><creatorcontrib>Kleszcz, Elżbieta</creatorcontrib><title>Graphs with a unique maximum independent set up to automorphisms</title><title>Discrete Applied Mathematics</title><description>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Automorphisms</subject><subject>Cartesian coordinates</subject><subject>Cartesian product</subject><subject>Chordal graph</subject><subject>Deletion</subject><subject>Graph automorphism</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Maximum independent set</subject><subject>Polynomials</subject><subject>Tree</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4Cnltnsm2TxYuy6CoseFHwFtIkZVPsh0nqx39vlnr2MsPAe28eP0IuEXIErK7b3KguZ8BYDkUOsDoiCxScZRXneEwWSVNlDMXbKTkLoQUATNeC3G69GveBfrm4p4pOvfuYLO3Ut-umjrre2NGm0UcabKTTSONA1RSHbvDj3oUunJOTRr0He_G3l-T14f5l85jtnrdPm7tdphnwmLFGYwWK19pwRM01LxoldFELA3VdcTRMGQF8zUpAtcaVKLCGda1KYGna1ZJczbmjH1LFEGU7TL5PLyWrRFmKMoUkFc4q7YcQvG3k6F2n_I9EkAdQspUJlDyAklDIBCp5bmaPTfU_nfUyaGd7bY3zVkdpBveP-xc2Z3BD</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Brešar, Boštjan</creator><creator>Dravec, Tanja</creator><creator>Gorzkowska, Aleksandra</creator><creator>Kleszcz, Elżbieta</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5335-7351</orcidid><orcidid>https://orcid.org/0000-0002-1413-2413</orcidid><orcidid>https://orcid.org/0000-0003-0540-0938</orcidid><orcidid>https://orcid.org/0000-0001-8471-4796</orcidid></search><sort><creationdate>20220815</creationdate><title>Graphs with a unique maximum independent set up to automorphisms</title><author>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Automorphisms</topic><topic>Cartesian coordinates</topic><topic>Cartesian product</topic><topic>Chordal graph</topic><topic>Deletion</topic><topic>Graph automorphism</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Maximum independent set</topic><topic>Polynomials</topic><topic>Tree</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dravec, Tanja</creatorcontrib><creatorcontrib>Gorzkowska, Aleksandra</creatorcontrib><creatorcontrib>Kleszcz, Elżbieta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brešar, Boštjan</au><au>Dravec, Tanja</au><au>Gorzkowska, Aleksandra</au><au>Kleszcz, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs with a unique maximum independent set up to automorphisms</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>317</volume><spage>124</spage><epage>135</epage><pages>124-135</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2022.04.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5335-7351</orcidid><orcidid>https://orcid.org/0000-0002-1413-2413</orcidid><orcidid>https://orcid.org/0000-0003-0540-0938</orcidid><orcidid>https://orcid.org/0000-0001-8471-4796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2022-08, Vol.317, p.124-135 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2685585671 |
source | Elsevier |
subjects | Algorithms Apexes Automorphisms Cartesian coordinates Cartesian product Chordal graph Deletion Graph automorphism Graph theory Graphs Maximum independent set Polynomials Tree Trees (mathematics) |
title | Graphs with a unique maximum independent set up to automorphisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20with%20a%20unique%20maximum%20independent%20set%20up%20to%20automorphisms&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Bre%C5%A1ar,%20Bo%C5%A1tjan&rft.date=2022-08-15&rft.volume=317&rft.spage=124&rft.epage=135&rft.pages=124-135&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2022.04.003&rft_dat=%3Cproquest_cross%3E2685585671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685585671&rft_id=info:pmid/&rfr_iscdi=true |