Loading…

Graphs with a unique maximum independent set up to automorphisms

If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Su...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2022-08, Vol.317, p.124-135
Main Authors: Brešar, Boštjan, Dravec, Tanja, Gorzkowska, Aleksandra, Kleszcz, Elżbieta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3
container_end_page 135
container_issue
container_start_page 124
container_title Discrete Applied Mathematics
container_volume 317
creator Brešar, Boštjan
Dravec, Tanja
Gorzkowska, Aleksandra
Kleszcz, Elżbieta
description If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.
doi_str_mv 10.1016/j.dam.2022.04.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685585671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X22001251</els_id><sourcerecordid>2685585671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Ad4Cnltnsm2TxYuy6CoseFHwFtIkZVPsh0nqx39vlnr2MsPAe28eP0IuEXIErK7b3KguZ8BYDkUOsDoiCxScZRXneEwWSVNlDMXbKTkLoQUATNeC3G69GveBfrm4p4pOvfuYLO3Ut-umjrre2NGm0UcabKTTSONA1RSHbvDj3oUunJOTRr0He_G3l-T14f5l85jtnrdPm7tdphnwmLFGYwWK19pwRM01LxoldFELA3VdcTRMGQF8zUpAtcaVKLCGda1KYGna1ZJczbmjH1LFEGU7TL5PLyWrRFmKMoUkFc4q7YcQvG3k6F2n_I9EkAdQspUJlDyAklDIBCp5bmaPTfU_nfUyaGd7bY3zVkdpBveP-xc2Z3BD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685585671</pqid></control><display><type>article</type><title>Graphs with a unique maximum independent set up to automorphisms</title><source>Elsevier</source><creator>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</creator><creatorcontrib>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</creatorcontrib><description>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2022.04.003</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Apexes ; Automorphisms ; Cartesian coordinates ; Cartesian product ; Chordal graph ; Deletion ; Graph automorphism ; Graph theory ; Graphs ; Maximum independent set ; Polynomials ; Tree ; Trees (mathematics)</subject><ispartof>Discrete Applied Mathematics, 2022-08, Vol.317, p.124-135</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</cites><orcidid>0000-0001-5335-7351 ; 0000-0002-1413-2413 ; 0000-0003-0540-0938 ; 0000-0001-8471-4796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dravec, Tanja</creatorcontrib><creatorcontrib>Gorzkowska, Aleksandra</creatorcontrib><creatorcontrib>Kleszcz, Elżbieta</creatorcontrib><title>Graphs with a unique maximum independent set up to automorphisms</title><title>Discrete Applied Mathematics</title><description>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</description><subject>Algorithms</subject><subject>Apexes</subject><subject>Automorphisms</subject><subject>Cartesian coordinates</subject><subject>Cartesian product</subject><subject>Chordal graph</subject><subject>Deletion</subject><subject>Graph automorphism</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Maximum independent set</subject><subject>Polynomials</subject><subject>Tree</subject><subject>Trees (mathematics)</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Ad4Cnltnsm2TxYuy6CoseFHwFtIkZVPsh0nqx39vlnr2MsPAe28eP0IuEXIErK7b3KguZ8BYDkUOsDoiCxScZRXneEwWSVNlDMXbKTkLoQUATNeC3G69GveBfrm4p4pOvfuYLO3Ut-umjrre2NGm0UcabKTTSONA1RSHbvDj3oUunJOTRr0He_G3l-T14f5l85jtnrdPm7tdphnwmLFGYwWK19pwRM01LxoldFELA3VdcTRMGQF8zUpAtcaVKLCGda1KYGna1ZJczbmjH1LFEGU7TL5PLyWrRFmKMoUkFc4q7YcQvG3k6F2n_I9EkAdQspUJlDyAklDIBCp5bmaPTfU_nfUyaGd7bY3zVkdpBveP-xc2Z3BD</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Brešar, Boštjan</creator><creator>Dravec, Tanja</creator><creator>Gorzkowska, Aleksandra</creator><creator>Kleszcz, Elżbieta</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5335-7351</orcidid><orcidid>https://orcid.org/0000-0002-1413-2413</orcidid><orcidid>https://orcid.org/0000-0003-0540-0938</orcidid><orcidid>https://orcid.org/0000-0001-8471-4796</orcidid></search><sort><creationdate>20220815</creationdate><title>Graphs with a unique maximum independent set up to automorphisms</title><author>Brešar, Boštjan ; Dravec, Tanja ; Gorzkowska, Aleksandra ; Kleszcz, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apexes</topic><topic>Automorphisms</topic><topic>Cartesian coordinates</topic><topic>Cartesian product</topic><topic>Chordal graph</topic><topic>Deletion</topic><topic>Graph automorphism</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Maximum independent set</topic><topic>Polynomials</topic><topic>Tree</topic><topic>Trees (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brešar, Boštjan</creatorcontrib><creatorcontrib>Dravec, Tanja</creatorcontrib><creatorcontrib>Gorzkowska, Aleksandra</creatorcontrib><creatorcontrib>Kleszcz, Elżbieta</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brešar, Boštjan</au><au>Dravec, Tanja</au><au>Gorzkowska, Aleksandra</au><au>Kleszcz, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphs with a unique maximum independent set up to automorphisms</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>317</volume><spage>124</spage><epage>135</epage><pages>124-135</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>If for every two maximum independent sets A and B in a graph G there exists an automorphism of G that maps A to B, then we call G an α-iso-unique graph. We extend several known characterizations of trees that have a unique maximum independent set obtaining characterizations of α-iso-unique trees. Such trees either have the property that the deletion of any edge does not affect the independence number, or they have the central edge, which connects two isomorphic subtrees, and only the deletion of the central edge increases the independence number. One of the characterizations results in a linear time algorithm to recognize whether a given tree is α-iso-unique. In contrast, we prove that the problem of recognizing whether an arbitrary graph is α-iso-unique is not polynomial unless P = NP. Constructions of large families of α-iso-unique graphs are given involving simplicial vertices and chordal graphs. In particular, we show that every graph is an induced subgraph of an α-iso-unique graph. Finally, α-iso-unique graphs are characterized among Cartesian products G□H of co-prime graphs G and H such that α(G□H)=α(H)|V(G)|.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2022.04.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5335-7351</orcidid><orcidid>https://orcid.org/0000-0002-1413-2413</orcidid><orcidid>https://orcid.org/0000-0003-0540-0938</orcidid><orcidid>https://orcid.org/0000-0001-8471-4796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2022-08, Vol.317, p.124-135
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2685585671
source Elsevier
subjects Algorithms
Apexes
Automorphisms
Cartesian coordinates
Cartesian product
Chordal graph
Deletion
Graph automorphism
Graph theory
Graphs
Maximum independent set
Polynomials
Tree
Trees (mathematics)
title Graphs with a unique maximum independent set up to automorphisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphs%20with%20a%20unique%20maximum%20independent%20set%20up%20to%20automorphisms&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Bre%C5%A1ar,%20Bo%C5%A1tjan&rft.date=2022-08-15&rft.volume=317&rft.spage=124&rft.epage=135&rft.pages=124-135&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2022.04.003&rft_dat=%3Cproquest_cross%3E2685585671%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c207t-2fc160a7bcd711c7c74fa8c4b8d0bb671d2ad80792501a913841b09ba5029bae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685585671&rft_id=info:pmid/&rfr_iscdi=true