Loading…
Face spoofing detection ensemble via multistage optimisation and pruning
•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to...
Saved in:
Published in: | Pattern recognition letters 2022-06, Vol.158, p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Pattern recognition letters |
container_volume | 158 |
creator | Fatemifar, Soroush Asadi, Shahrokh Awais, Muhammad Akbari, Ali Kittler, Josef |
description | •We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods.
Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches. |
doi_str_mv | 10.1016/j.patrec.2022.04.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685588022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865522001027</els_id><sourcerecordid>2685588022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYeC59Y0aZr0IsjiusKCFz2HNJ0sKdumJumCb2_WevY0MHz_P8yH0H2JixKX9WNfTCp60AXBhBS4KjCuL9CqFJzknFbVJVoljOeiZuwa3YTQ40TQRqzQbqs0ZGFyztjxkHUQQUfrxgzGAEN7hOxkVTbMx2hDVAfI3BTtYIP6hdTYZZOfxxS9RVdGHQPc_c01-ty-fGx2-f799W3zvM81pVXMgbesbGpBasGN1i3nuOOkUYaZEghNKy5YbQTXRBijDDRVrQRQTFuuMGvoGj0svZN3XzOEKHs3-zGdlKmTMSGSg0RVC6W9C8GDkZO3g_LfssTy7Ez2cnEmz84kruTZyBo9LTFIH5wseBm0hVFDZxMaZefs_wU_xeJ3uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685588022</pqid></control><display><type>article</type><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</creator><creatorcontrib>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</creatorcontrib><description>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods.
Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2022.04.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anomalies ; Anomaly detection ; Client-specific information ; Convolutional neural networks ; Ensemble of one-class classifiers ; Ensemble pruning ; Face ; Face recognition ; Face spoofing detection ; Genetic algorithms ; Optimization ; Pattern recognition ; Pattern search ; Spoofing</subject><ispartof>Pattern recognition letters, 2022-06, Vol.158, p.1-8</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</citedby><cites>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</cites><orcidid>0000-0003-1457-2977 ; 0000-0002-8110-9205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fatemifar, Soroush</creatorcontrib><creatorcontrib>Asadi, Shahrokh</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><title>Pattern recognition letters</title><description>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods.
Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Client-specific information</subject><subject>Convolutional neural networks</subject><subject>Ensemble of one-class classifiers</subject><subject>Ensemble pruning</subject><subject>Face</subject><subject>Face recognition</subject><subject>Face spoofing detection</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Pattern search</subject><subject>Spoofing</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYeC59Y0aZr0IsjiusKCFz2HNJ0sKdumJumCb2_WevY0MHz_P8yH0H2JixKX9WNfTCp60AXBhBS4KjCuL9CqFJzknFbVJVoljOeiZuwa3YTQ40TQRqzQbqs0ZGFyztjxkHUQQUfrxgzGAEN7hOxkVTbMx2hDVAfI3BTtYIP6hdTYZZOfxxS9RVdGHQPc_c01-ty-fGx2-f799W3zvM81pVXMgbesbGpBasGN1i3nuOOkUYaZEghNKy5YbQTXRBijDDRVrQRQTFuuMGvoGj0svZN3XzOEKHs3-zGdlKmTMSGSg0RVC6W9C8GDkZO3g_LfssTy7Ez2cnEmz84kruTZyBo9LTFIH5wseBm0hVFDZxMaZefs_wU_xeJ3uA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Fatemifar, Soroush</creator><creator>Asadi, Shahrokh</creator><creator>Awais, Muhammad</creator><creator>Akbari, Ali</creator><creator>Kittler, Josef</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1457-2977</orcidid><orcidid>https://orcid.org/0000-0002-8110-9205</orcidid></search><sort><creationdate>202206</creationdate><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><author>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Client-specific information</topic><topic>Convolutional neural networks</topic><topic>Ensemble of one-class classifiers</topic><topic>Ensemble pruning</topic><topic>Face</topic><topic>Face recognition</topic><topic>Face spoofing detection</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Pattern search</topic><topic>Spoofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatemifar, Soroush</creatorcontrib><creatorcontrib>Asadi, Shahrokh</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatemifar, Soroush</au><au>Asadi, Shahrokh</au><au>Awais, Muhammad</au><au>Akbari, Ali</au><au>Kittler, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face spoofing detection ensemble via multistage optimisation and pruning</atitle><jtitle>Pattern recognition letters</jtitle><date>2022-06</date><risdate>2022</risdate><volume>158</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods.
Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2022.04.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1457-2977</orcidid><orcidid>https://orcid.org/0000-0002-8110-9205</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2022-06, Vol.158, p.1-8 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2685588022 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anomalies Anomaly detection Client-specific information Convolutional neural networks Ensemble of one-class classifiers Ensemble pruning Face Face recognition Face spoofing detection Genetic algorithms Optimization Pattern recognition Pattern search Spoofing |
title | Face spoofing detection ensemble via multistage optimisation and pruning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20spoofing%20detection%20ensemble%20via%20multistage%20optimisation%20and%20pruning&rft.jtitle=Pattern%20recognition%20letters&rft.au=Fatemifar,%20Soroush&rft.date=2022-06&rft.volume=158&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2022.04.006&rft_dat=%3Cproquest_cross%3E2685588022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685588022&rft_id=info:pmid/&rfr_iscdi=true |