Loading…

Face spoofing detection ensemble via multistage optimisation and pruning

•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2022-06, Vol.158, p.1-8
Main Authors: Fatemifar, Soroush, Asadi, Shahrokh, Awais, Muhammad, Akbari, Ali, Kittler, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593
cites cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593
container_end_page 8
container_issue
container_start_page 1
container_title Pattern recognition letters
container_volume 158
creator Fatemifar, Soroush
Asadi, Shahrokh
Awais, Muhammad
Akbari, Ali
Kittler, Josef
description •We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods. Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.
doi_str_mv 10.1016/j.patrec.2022.04.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685588022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865522001027</els_id><sourcerecordid>2685588022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYeC59Y0aZr0IsjiusKCFz2HNJ0sKdumJumCb2_WevY0MHz_P8yH0H2JixKX9WNfTCp60AXBhBS4KjCuL9CqFJzknFbVJVoljOeiZuwa3YTQ40TQRqzQbqs0ZGFyztjxkHUQQUfrxgzGAEN7hOxkVTbMx2hDVAfI3BTtYIP6hdTYZZOfxxS9RVdGHQPc_c01-ty-fGx2-f799W3zvM81pVXMgbesbGpBasGN1i3nuOOkUYaZEghNKy5YbQTXRBijDDRVrQRQTFuuMGvoGj0svZN3XzOEKHs3-zGdlKmTMSGSg0RVC6W9C8GDkZO3g_LfssTy7Ez2cnEmz84kruTZyBo9LTFIH5wseBm0hVFDZxMaZefs_wU_xeJ3uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685588022</pqid></control><display><type>article</type><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</creator><creatorcontrib>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</creatorcontrib><description>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods. Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2022.04.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anomalies ; Anomaly detection ; Client-specific information ; Convolutional neural networks ; Ensemble of one-class classifiers ; Ensemble pruning ; Face ; Face recognition ; Face spoofing detection ; Genetic algorithms ; Optimization ; Pattern recognition ; Pattern search ; Spoofing</subject><ispartof>Pattern recognition letters, 2022-06, Vol.158, p.1-8</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</citedby><cites>FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</cites><orcidid>0000-0003-1457-2977 ; 0000-0002-8110-9205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fatemifar, Soroush</creatorcontrib><creatorcontrib>Asadi, Shahrokh</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><title>Pattern recognition letters</title><description>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods. Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Client-specific information</subject><subject>Convolutional neural networks</subject><subject>Ensemble of one-class classifiers</subject><subject>Ensemble pruning</subject><subject>Face</subject><subject>Face recognition</subject><subject>Face spoofing detection</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Pattern search</subject><subject>Spoofing</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYeC59Y0aZr0IsjiusKCFz2HNJ0sKdumJumCb2_WevY0MHz_P8yH0H2JixKX9WNfTCp60AXBhBS4KjCuL9CqFJzknFbVJVoljOeiZuwa3YTQ40TQRqzQbqs0ZGFyztjxkHUQQUfrxgzGAEN7hOxkVTbMx2hDVAfI3BTtYIP6hdTYZZOfxxS9RVdGHQPc_c01-ty-fGx2-f799W3zvM81pVXMgbesbGpBasGN1i3nuOOkUYaZEghNKy5YbQTXRBijDDRVrQRQTFuuMGvoGj0svZN3XzOEKHs3-zGdlKmTMSGSg0RVC6W9C8GDkZO3g_LfssTy7Ez2cnEmz84kruTZyBo9LTFIH5wseBm0hVFDZxMaZefs_wU_xeJ3uA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Fatemifar, Soroush</creator><creator>Asadi, Shahrokh</creator><creator>Awais, Muhammad</creator><creator>Akbari, Ali</creator><creator>Kittler, Josef</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1457-2977</orcidid><orcidid>https://orcid.org/0000-0002-8110-9205</orcidid></search><sort><creationdate>202206</creationdate><title>Face spoofing detection ensemble via multistage optimisation and pruning</title><author>Fatemifar, Soroush ; Asadi, Shahrokh ; Awais, Muhammad ; Akbari, Ali ; Kittler, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Client-specific information</topic><topic>Convolutional neural networks</topic><topic>Ensemble of one-class classifiers</topic><topic>Ensemble pruning</topic><topic>Face</topic><topic>Face recognition</topic><topic>Face spoofing detection</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Pattern search</topic><topic>Spoofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatemifar, Soroush</creatorcontrib><creatorcontrib>Asadi, Shahrokh</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Akbari, Ali</creatorcontrib><creatorcontrib>Kittler, Josef</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatemifar, Soroush</au><au>Asadi, Shahrokh</au><au>Awais, Muhammad</au><au>Akbari, Ali</au><au>Kittler, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face spoofing detection ensemble via multistage optimisation and pruning</atitle><jtitle>Pattern recognition letters</jtitle><date>2022-06</date><risdate>2022</risdate><volume>158</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We develop a solution for the face spoofing detection problem by fusing multiple anomaly experts using Weighted Averaging(WA).•We propose a novel three-stage optimisation approach to improve the generalisation capability and accuracy of the WA fusion.•We define a new score normalisation approach to support multiple anomaly detectors fusion.•We define an effective criterion to prune the WA to achieve better classification result and generalisation performance.•We experimentally demonstrate that the proposed anomaly-based WA achieves superior performance over state-of-theart methods. Despite the recent improvements in facial recognition, face spoofing attacks can still pose a serious security threat to biometric systems. As fraudsters are coming up with novel spoofing attacks, anomaly-based detectors, compared to the binary spoofing attack counterparts, have certain generalisation performance advantages. In this work, we investigate the merits of fusing multiple anomaly classifiers using weighted averaging (WA) fusion. The design of the entire system is based on genuine-access data only. To optimise the parameters of WA, we propose a novel three-stage optimisation method with the following contributions: (a) A new hybrid optimisation method using Genetic Algorithm (GA) and Pattern Search (PS) to explore the weight space more effectively (b) a novel two-sided score normalisation method to improve the anomaly detection performance (c) a new ensemble pruning method to improve the generalisation performance. To further boost the performance of the proposed anomaly detection ensemble, we incorporate client-specific information to train the proposed model. We evaluate the capability of the proposed model on publicly available face spoofing databases including Replay-Attack, Replay-Mobile and Rose-Youtu. The experimental results demonstrate that the proposed WA fusion outperforms the state-of-the-art anomaly-based and multiclass approaches.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2022.04.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1457-2977</orcidid><orcidid>https://orcid.org/0000-0002-8110-9205</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2022-06, Vol.158, p.1-8
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2685588022
source ScienceDirect Freedom Collection 2022-2024
subjects Anomalies
Anomaly detection
Client-specific information
Convolutional neural networks
Ensemble of one-class classifiers
Ensemble pruning
Face
Face recognition
Face spoofing detection
Genetic algorithms
Optimization
Pattern recognition
Pattern search
Spoofing
title Face spoofing detection ensemble via multistage optimisation and pruning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A54%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20spoofing%20detection%20ensemble%20via%20multistage%20optimisation%20and%20pruning&rft.jtitle=Pattern%20recognition%20letters&rft.au=Fatemifar,%20Soroush&rft.date=2022-06&rft.volume=158&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2022.04.006&rft_dat=%3Cproquest_cross%3E2685588022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-e7b519682687fccb770d729af5f1e23fcc7856f87c28ffafe946a8e303b7a0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685588022&rft_id=info:pmid/&rfr_iscdi=true