Loading…
On higher dimensional Poissonian pair correlation
In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive en...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bera, Tanmoy Das, Mithun Kumar Mukhopadhyay, Anirban |
description | In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta>0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2685820742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685820742</sourcerecordid><originalsourceid>FETCH-proquest_journals_26858207423</originalsourceid><addsrcrecordid>eNqNjLEKwjAQQIMgWLT_EHAupJem7S6Kmw7uJWi0V2Ku3rX_bwc_wOkN7_FWKgNry6KtADYqFxmMMVA34JzNVHlJusdXH1g_8B2SICUf9ZVQhBL6pEePrO_EHKKfFrtT66ePEvIft2p_Ot4O52Jk-sxBpm6gmZeJdFC3rgXTVGD_q77MTjPm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685820742</pqid></control><display><type>article</type><title>On higher dimensional Poissonian pair correlation</title><source>Publicly Available Content (ProQuest)</source><creator>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</creator><creatorcontrib>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</creatorcontrib><description>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta>0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Number theory</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2685820742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Bera, Tanmoy</creatorcontrib><creatorcontrib>Das, Mithun Kumar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><title>On higher dimensional Poissonian pair correlation</title><title>arXiv.org</title><description>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta>0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</description><subject>Number theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLEKwjAQQIMgWLT_EHAupJem7S6Kmw7uJWi0V2Ku3rX_bwc_wOkN7_FWKgNry6KtADYqFxmMMVA34JzNVHlJusdXH1g_8B2SICUf9ZVQhBL6pEePrO_EHKKfFrtT66ePEvIft2p_Ot4O52Jk-sxBpm6gmZeJdFC3rgXTVGD_q77MTjPm</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Bera, Tanmoy</creator><creator>Das, Mithun Kumar</creator><creator>Mukhopadhyay, Anirban</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230817</creationdate><title>On higher dimensional Poissonian pair correlation</title><author>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26858207423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bera, Tanmoy</creatorcontrib><creatorcontrib>Das, Mithun Kumar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Tanmoy</au><au>Das, Mithun Kumar</au><au>Mukhopadhyay, Anirban</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On higher dimensional Poissonian pair correlation</atitle><jtitle>arXiv.org</jtitle><date>2023-08-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta>0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2685820742 |
source | Publicly Available Content (ProQuest) |
subjects | Number theory |
title | On higher dimensional Poissonian pair correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20higher%20dimensional%20Poissonian%20pair%20correlation&rft.jtitle=arXiv.org&rft.au=Bera,%20Tanmoy&rft.date=2023-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2685820742%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26858207423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685820742&rft_id=info:pmid/&rfr_iscdi=true |