Loading…

On higher dimensional Poissonian pair correlation

In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive en...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-08
Main Authors: Bera, Tanmoy, Das, Mithun Kumar, Mukhopadhyay, Anirban
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bera, Tanmoy
Das, Mithun Kumar
Mukhopadhyay, Anirban
description In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta>0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2685820742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685820742</sourcerecordid><originalsourceid>FETCH-proquest_journals_26858207423</originalsourceid><addsrcrecordid>eNqNjLEKwjAQQIMgWLT_EHAupJem7S6Kmw7uJWi0V2Ku3rX_bwc_wOkN7_FWKgNry6KtADYqFxmMMVA34JzNVHlJusdXH1g_8B2SICUf9ZVQhBL6pEePrO_EHKKfFrtT66ePEvIft2p_Ot4O52Jk-sxBpm6gmZeJdFC3rgXTVGD_q77MTjPm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685820742</pqid></control><display><type>article</type><title>On higher dimensional Poissonian pair correlation</title><source>Publicly Available Content (ProQuest)</source><creator>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</creator><creatorcontrib>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</creatorcontrib><description>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta&gt;0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Number theory</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2685820742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Bera, Tanmoy</creatorcontrib><creatorcontrib>Das, Mithun Kumar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><title>On higher dimensional Poissonian pair correlation</title><title>arXiv.org</title><description>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta&gt;0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</description><subject>Number theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLEKwjAQQIMgWLT_EHAupJem7S6Kmw7uJWi0V2Ku3rX_bwc_wOkN7_FWKgNry6KtADYqFxmMMVA34JzNVHlJusdXH1g_8B2SICUf9ZVQhBL6pEePrO_EHKKfFrtT66ePEvIft2p_Ot4O52Jk-sxBpm6gmZeJdFC3rgXTVGD_q77MTjPm</recordid><startdate>20230817</startdate><enddate>20230817</enddate><creator>Bera, Tanmoy</creator><creator>Das, Mithun Kumar</creator><creator>Mukhopadhyay, Anirban</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230817</creationdate><title>On higher dimensional Poissonian pair correlation</title><author>Bera, Tanmoy ; Das, Mithun Kumar ; Mukhopadhyay, Anirban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26858207423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Bera, Tanmoy</creatorcontrib><creatorcontrib>Das, Mithun Kumar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Tanmoy</au><au>Das, Mithun Kumar</au><au>Mukhopadhyay, Anirban</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On higher dimensional Poissonian pair correlation</atitle><jtitle>arXiv.org</jtitle><date>2023-08-17</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this article we study the pair correlation statistic for higher dimensional sequences. We show that for any \(d\geq 2\), strictly increasing sequences \((a_n^{(1)}),\ldots, (a_n^{(d)})\) of natural numbers have metric Poissonian pair correlation with respect to sup-norm if their joint additive energy is \(O(N^{3-\delta})\) for any \(\delta&gt;0\). Further, in two dimension, we establish an analogous result with respect to \(2\)-norm. As a consequence, it follows that \((\{n\alpha\}, \{n^2\beta\})\) and \((\{n\alpha\}, \{[n\log^An]\beta\})\) (\(A \in [1,2]\)) have Poissonian pair correlation for almost all \((\alpha,\beta)\in \mathbb{R}^2\) with respect to sup-norm and \(2\)-norm. This gives a negative answer to the question raised by Hofer and Kaltenb\"ock [15]. The proof uses estimates for 'Generalized' GCD-sums.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2685820742
source Publicly Available Content (ProQuest)
subjects Number theory
title On higher dimensional Poissonian pair correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20higher%20dimensional%20Poissonian%20pair%20correlation&rft.jtitle=arXiv.org&rft.au=Bera,%20Tanmoy&rft.date=2023-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2685820742%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26858207423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685820742&rft_id=info:pmid/&rfr_iscdi=true