Loading…

Microbial Synthesis of Hydroxyapatite-Nanocellulose Nanocomposites from Symbiotic Culture of Bacteria and Yeast Pellicle of Fermented Kombucha Tea

The strong need for the utilization of industrial by-products and biowaste increases as we transition towards a circular economy. On these grounds, the present research aims to explore the applicability of the Symbiotic Culture of Bacteria and Yeast (SCOBY), a by-product of a functional beverage ind...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-07, Vol.14 (13), p.8144
Main Authors: Paramasivan, Mareeswari, Kumar, Tiruchirapalli Subramaniam Sampath, Chandra, T. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The strong need for the utilization of industrial by-products and biowaste increases as we transition towards a circular economy. On these grounds, the present research aims to explore the applicability of the Symbiotic Culture of Bacteria and Yeast (SCOBY), a by-product of a functional beverage industry, for applications in biomedicine. Herein, hydroxyapatite (HA)-coated SCOBY nanocellulose (SN) nanocomposite (SNHA) was synthesized via a novel biomimetic approach using Serratia marcescens strain by adopting two different in situ approaches. Characterization studies established the presence of functional groups corresponding to pure nanocellulose and HA. Microscopic analysis revealed SN fibers of the dimensions 30–50 nm surrounded by 10–15 nm rod-shaped HA crystals. The SNHA membranes were carbonated and harbored traces of metal ions. A deposition of nano-HA crystals as high as 30–50% was achieved. Overall, the synthesized SNHA membranes reflected increased stability, low crystalline nature and an ion-substituted structure resembling the natural bone; they are thereby suited for bone tissue engineering.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14138144