Loading…
GIS and Remote Sensing-Based Approach for Monitoring and Assessment of Plastic Leakage and Pollution Reduction in the Lower Mekong River Basin
Determination of plastic leakage sources and pathways is essential in plastic pollution mitigation. Finding ways to stem land-sourced plastic waste leakage requires understanding its sources. Spatial analysis conducted in a geographic information system (GIS) environment and remote sensing investiga...
Saved in:
Published in: | Sustainability 2022-07, Vol.14 (13), p.7879 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Determination of plastic leakage sources and pathways is essential in plastic pollution mitigation. Finding ways to stem land-sourced plastic waste leakage requires understanding its sources. Spatial analysis conducted in a geographic information system (GIS) environment and remote sensing investigation uncovered insights into the distribution of plastic leakage in the lower Mekong River basin (LMRB). The main objectives of this approach were: (i) to map plastic leakage density using multi-source geospatial data; and (ii) to identify plastic leakage source hotspots and their accumulation pathways by incorporating hydrological information. Mapping results have shown that plastic leakage density was highly concentrated in urban areas with a high intensity of human activities. In contrast, the major pathways for plastic leakage source hotspots were the high morphometric areas directly influenced by facilities, infrastructure, and population. The overall efforts in this study demonstrate the effectiveness of the proposed novel method used for predicting plastic leakage density and its sources from land-based activities. It is also accomplished using multi-geospatial data with GIS-based analysis to produce a graphical model for plastic leakage waste density in each region that non-technical personnel can easily visualize. The proposed method can be applied to other areas beyond the LMRB to improve the baseline information on plastic waste leakage into the river. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su14137879 |