Loading…
FedHeN: Federated Learning in Heterogeneous Networks
We propose a novel training recipe for federated learning with heterogeneous networks where each device can have different architectures. We introduce training with a side objective to the devices of higher complexities to jointly train different architectures in a federated setting. We empirically...
Saved in:
Published in: | arXiv.org 2022-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel training recipe for federated learning with heterogeneous networks where each device can have different architectures. We introduce training with a side objective to the devices of higher complexities to jointly train different architectures in a federated setting. We empirically show that our approach improves the performance of different architectures and leads to high communication savings compared to the state-of-the-art methods. |
---|---|
ISSN: | 2331-8422 |