Loading…

NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION

This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time...

Full description

Saved in:
Bibliographic Details
Published in:TWMS journal of applied and engineering mathematics 2022-07, Vol.12 (3), p.919
Main Authors: Kirli, E, Irk, D, Gorgulu, M. Zorsahin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page 919
container_title TWMS journal of applied and engineering mathematics
container_volume 12
creator Kirli, E
Irk, D
Gorgulu, M. Zorsahin
description This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time discretization. By using the fourth order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is higher than the current studies. The efficiency and accuracy of the proposed method is studied by two examples. The obtained results show that the proposed method has higher accuracy as intended. Keywords: Collocation method, cubic B-spline functions, one-step method, second order linear hyperbolic telegraph equation. AMS Subject Classification: 65M70, 35L20.
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2688538614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710714493</galeid><sourcerecordid>A710714493</sourcerecordid><originalsourceid>FETCH-LOGICAL-g180t-1859e6b2d780f6a78eb54d0f36acd391261227f138061ad36230af58b88c276f3</originalsourceid><addsrcrecordid>eNptjc1ugzAQhFHVSo3SvIOlnqn8h22OlDgEieKUwKEnZMCOiBJogbx_iVqpOXTnMKvVN7N3zgIjylyEKL-_2R-d1Tge4TyCMQ7JwonS4k1mcRgkYK-SIo9VCtQG7GWo0jVQ2VpmIIlTGWRg-7GT2atK4hDkMpFRFuy2QL4XwTX05DxYfRrN6teXTrGRebh1ExVd290DEnBykfB8wyrccAEt01yYyqMNtITpuiE-wgxhzC0iAjKkG8Iwgdp6ohKixpxZsnSef3o_h_7rYsapPPaXoZtflpgJ4RHBEP2jDvpkyraz_TTo-tyOdRlwBDmi1Ccz9fIPNasx57buO2Pb-X4T-Aak_FzX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688538614</pqid></control><display><type>article</type><title>NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION</title><source>Publicly Available Content Database</source><creator>Kirli, E ; Irk, D ; Gorgulu, M. Zorsahin</creator><creatorcontrib>Kirli, E ; Irk, D ; Gorgulu, M. Zorsahin</creatorcontrib><description>This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time discretization. By using the fourth order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is higher than the current studies. The efficiency and accuracy of the proposed method is studied by two examples. The obtained results show that the proposed method has higher accuracy as intended. Keywords: Collocation method, cubic B-spline functions, one-step method, second order linear hyperbolic telegraph equation. AMS Subject Classification: 65M70, 35L20.</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Accuracy ; Algorithms ; Approximation ; Collocation methods ; Discretization ; Mathematics ; Methods ; Numerical analysis ; Partial differential equations</subject><ispartof>TWMS journal of applied and engineering mathematics, 2022-07, Vol.12 (3), p.919</ispartof><rights>COPYRIGHT 2022 Turkic World Mathematical Society</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2688538614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Kirli, E</creatorcontrib><creatorcontrib>Irk, D</creatorcontrib><creatorcontrib>Gorgulu, M. Zorsahin</creatorcontrib><title>NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION</title><title>TWMS journal of applied and engineering mathematics</title><description>This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time discretization. By using the fourth order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is higher than the current studies. The efficiency and accuracy of the proposed method is studied by two examples. The obtained results show that the proposed method has higher accuracy as intended. Keywords: Collocation method, cubic B-spline functions, one-step method, second order linear hyperbolic telegraph equation. AMS Subject Classification: 65M70, 35L20.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Collocation methods</subject><subject>Discretization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptjc1ugzAQhFHVSo3SvIOlnqn8h22OlDgEieKUwKEnZMCOiBJogbx_iVqpOXTnMKvVN7N3zgIjylyEKL-_2R-d1Tge4TyCMQ7JwonS4k1mcRgkYK-SIo9VCtQG7GWo0jVQ2VpmIIlTGWRg-7GT2atK4hDkMpFRFuy2QL4XwTX05DxYfRrN6teXTrGRebh1ExVd290DEnBykfB8wyrccAEt01yYyqMNtITpuiE-wgxhzC0iAjKkG8Iwgdp6ohKixpxZsnSef3o_h_7rYsapPPaXoZtflpgJ4RHBEP2jDvpkyraz_TTo-tyOdRlwBDmi1Ccz9fIPNasx57buO2Pb-X4T-Aak_FzX</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Kirli, E</creator><creator>Irk, D</creator><creator>Gorgulu, M. Zorsahin</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220701</creationdate><title>NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION</title><author>Kirli, E ; Irk, D ; Gorgulu, M. Zorsahin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g180t-1859e6b2d780f6a78eb54d0f36acd391261227f138061ad36230af58b88c276f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Collocation methods</topic><topic>Discretization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirli, E</creatorcontrib><creatorcontrib>Irk, D</creatorcontrib><creatorcontrib>Gorgulu, M. Zorsahin</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest_Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirli, E</au><au>Irk, D</au><au>Gorgulu, M. Zorsahin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>919</spage><pages>919-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>This paper is of about a numerical solution of the second order linear hyperbolic telegraph equation. To solve numerically the second order linear hyperbolic telegraph equation, the cubic B-spline collocation method is used in space discretization and the fourth order one-step method is used in time discretization. By using the fourth order one-step method, it is aimed to obtain a numerical algorithm whose accuracy is higher than the current studies. The efficiency and accuracy of the proposed method is studied by two examples. The obtained results show that the proposed method has higher accuracy as intended. Keywords: Collocation method, cubic B-spline functions, one-step method, second order linear hyperbolic telegraph equation. AMS Subject Classification: 65M70, 35L20.</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2146-1147
ispartof TWMS journal of applied and engineering mathematics, 2022-07, Vol.12 (3), p.919
issn 2146-1147
2146-1147
language eng
recordid cdi_proquest_journals_2688538614
source Publicly Available Content Database
subjects Accuracy
Algorithms
Approximation
Collocation methods
Discretization
Mathematics
Methods
Numerical analysis
Partial differential equations
title NUMERICAL SOLUTION OF SECOND ORDER LINEAR HYPERBOLIC TELEGRAPH EQUATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SOLUTION%20OF%20SECOND%20ORDER%20LINEAR%20HYPERBOLIC%20TELEGRAPH%20EQUATION&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Kirli,%20E&rft.date=2022-07-01&rft.volume=12&rft.issue=3&rft.spage=919&rft.pages=919-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA710714493%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g180t-1859e6b2d780f6a78eb54d0f36acd391261227f138061ad36230af58b88c276f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688538614&rft_id=info:pmid/&rft_galeid=A710714493&rfr_iscdi=true