Loading…
Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis
Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perfo...
Saved in:
Published in: | Measurement : journal of the International Measurement Confederation 2022-06, Vol.196, p.111181, Article 111181 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3 |
container_end_page | |
container_issue | |
container_start_page | 111181 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 196 |
creator | Xu, Peng Liu, Jianchang Shang, Liangliang Zhang, Wenle |
description | Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults.
•A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults. |
doi_str_mv | 10.1016/j.measurement.2022.111181 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688598511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122004389</els_id><sourcerecordid>2688598511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH4o4d8RJSdMjmviSJnHhwC3KEhcy2qQkLaj_nkzjwBFfbMevX8UPIZdAV0BBXO9WPeo0RezRjytGGVtBDglHZAGy5mUF7PWYLCgTvGSsglNyltKOUip4IxZkfvJ2SmN0uiuGGAymVLR66sbC4ohmdMEX2tvCOv3mQ3J5GnWP3yF-FFud0BZZgP5de5PrNA0Yv9z--QOjxy6PxhiGuTChH4LPXXbT3ZyNzslJq7uEF795SV7u717Wj-Xm-eFpfbspDa-asUSK1vB6qwU0DUrQXEhGdV1tRcNrQCE1YG0AqraRlbVV1tlK5rLVnBm-JFcH23zd54RpVLswxfyHpJiQ8qaRNwBZ1RxUJoaUIrZqiK7XcVZA1R602qk_oNUetDqAzrvrwy7mK74cRpWMwz0PFzNBZYP7h8sP_F6QPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688598511</pqid></control><display><type>article</type><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</creator><creatorcontrib>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</creatorcontrib><description>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults.
•A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111181</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Continuously stirred tank reactors ; Data-dependent kernel ; Entropy ; Fault detection ; Fault diagnosis ; Faults ; Kernel entropy component analysis (KECA) ; Kernels ; Monitoring ; Multiscale principal component analysis (MSPCA) ; Principal components analysis ; Process monitoring ; Unknown fault diagnosis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-06, Vol.196, p.111181, Article 111181</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</citedby><cites>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</cites><orcidid>0000-0002-2801-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Shang, Liangliang</creatorcontrib><creatorcontrib>Zhang, Wenle</creatorcontrib><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><title>Measurement : journal of the International Measurement Confederation</title><description>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults.
•A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</description><subject>Continuously stirred tank reactors</subject><subject>Data-dependent kernel</subject><subject>Entropy</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Kernel entropy component analysis (KECA)</subject><subject>Kernels</subject><subject>Monitoring</subject><subject>Multiscale principal component analysis (MSPCA)</subject><subject>Principal components analysis</subject><subject>Process monitoring</subject><subject>Unknown fault diagnosis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH4o4d8RJSdMjmviSJnHhwC3KEhcy2qQkLaj_nkzjwBFfbMevX8UPIZdAV0BBXO9WPeo0RezRjytGGVtBDglHZAGy5mUF7PWYLCgTvGSsglNyltKOUip4IxZkfvJ2SmN0uiuGGAymVLR66sbC4ohmdMEX2tvCOv3mQ3J5GnWP3yF-FFud0BZZgP5de5PrNA0Yv9z--QOjxy6PxhiGuTChH4LPXXbT3ZyNzslJq7uEF795SV7u717Wj-Xm-eFpfbspDa-asUSK1vB6qwU0DUrQXEhGdV1tRcNrQCE1YG0AqraRlbVV1tlK5rLVnBm-JFcH23zd54RpVLswxfyHpJiQ8qaRNwBZ1RxUJoaUIrZqiK7XcVZA1R602qk_oNUetDqAzrvrwy7mK74cRpWMwz0PFzNBZYP7h8sP_F6QPg</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Xu, Peng</creator><creator>Liu, Jianchang</creator><creator>Shang, Liangliang</creator><creator>Zhang, Wenle</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid></search><sort><creationdate>20220615</creationdate><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><author>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuously stirred tank reactors</topic><topic>Data-dependent kernel</topic><topic>Entropy</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Kernel entropy component analysis (KECA)</topic><topic>Kernels</topic><topic>Monitoring</topic><topic>Multiscale principal component analysis (MSPCA)</topic><topic>Principal components analysis</topic><topic>Process monitoring</topic><topic>Unknown fault diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Shang, Liangliang</creatorcontrib><creatorcontrib>Zhang, Wenle</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Peng</au><au>Liu, Jianchang</au><au>Shang, Liangliang</au><au>Zhang, Wenle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>196</volume><spage>111181</spage><pages>111181-</pages><artnum>111181</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults.
•A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111181</doi><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2022-06, Vol.196, p.111181, Article 111181 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2688598511 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Continuously stirred tank reactors Data-dependent kernel Entropy Fault detection Fault diagnosis Faults Kernel entropy component analysis (KECA) Kernels Monitoring Multiscale principal component analysis (MSPCA) Principal components analysis Process monitoring Unknown fault diagnosis |
title | Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20process%20fault%20detection%20and%20diagnosis%20framework%20based%20on%20enhanced%20supervised%20kernel%20entropy%20component%20analysis&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Xu,%20Peng&rft.date=2022-06-15&rft.volume=196&rft.spage=111181&rft.pages=111181-&rft.artnum=111181&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111181&rft_dat=%3Cproquest_cross%3E2688598511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688598511&rft_id=info:pmid/&rfr_iscdi=true |