Loading…

Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis

Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perfo...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation 2022-06, Vol.196, p.111181, Article 111181
Main Authors: Xu, Peng, Liu, Jianchang, Shang, Liangliang, Zhang, Wenle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3
cites cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3
container_end_page
container_issue
container_start_page 111181
container_title Measurement : journal of the International Measurement Confederation
container_volume 196
creator Xu, Peng
Liu, Jianchang
Shang, Liangliang
Zhang, Wenle
description Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults. •A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.
doi_str_mv 10.1016/j.measurement.2022.111181
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688598511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224122004389</els_id><sourcerecordid>2688598511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH4o4d8RJSdMjmviSJnHhwC3KEhcy2qQkLaj_nkzjwBFfbMevX8UPIZdAV0BBXO9WPeo0RezRjytGGVtBDglHZAGy5mUF7PWYLCgTvGSsglNyltKOUip4IxZkfvJ2SmN0uiuGGAymVLR66sbC4ohmdMEX2tvCOv3mQ3J5GnWP3yF-FFud0BZZgP5de5PrNA0Yv9z--QOjxy6PxhiGuTChH4LPXXbT3ZyNzslJq7uEF795SV7u717Wj-Xm-eFpfbspDa-asUSK1vB6qwU0DUrQXEhGdV1tRcNrQCE1YG0AqraRlbVV1tlK5rLVnBm-JFcH23zd54RpVLswxfyHpJiQ8qaRNwBZ1RxUJoaUIrZqiK7XcVZA1R602qk_oNUetDqAzrvrwy7mK74cRpWMwz0PFzNBZYP7h8sP_F6QPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688598511</pqid></control><display><type>article</type><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</creator><creatorcontrib>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</creatorcontrib><description>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults. •A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2022.111181</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Continuously stirred tank reactors ; Data-dependent kernel ; Entropy ; Fault detection ; Fault diagnosis ; Faults ; Kernel entropy component analysis (KECA) ; Kernels ; Monitoring ; Multiscale principal component analysis (MSPCA) ; Principal components analysis ; Process monitoring ; Unknown fault diagnosis</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2022-06, Vol.196, p.111181, Article 111181</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</citedby><cites>FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</cites><orcidid>0000-0002-2801-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Shang, Liangliang</creatorcontrib><creatorcontrib>Zhang, Wenle</creatorcontrib><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><title>Measurement : journal of the International Measurement Confederation</title><description>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults. •A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</description><subject>Continuously stirred tank reactors</subject><subject>Data-dependent kernel</subject><subject>Entropy</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Kernel entropy component analysis (KECA)</subject><subject>Kernels</subject><subject>Monitoring</subject><subject>Multiscale principal component analysis (MSPCA)</subject><subject>Principal components analysis</subject><subject>Process monitoring</subject><subject>Unknown fault diagnosis</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH4o4d8RJSdMjmviSJnHhwC3KEhcy2qQkLaj_nkzjwBFfbMevX8UPIZdAV0BBXO9WPeo0RezRjytGGVtBDglHZAGy5mUF7PWYLCgTvGSsglNyltKOUip4IxZkfvJ2SmN0uiuGGAymVLR66sbC4ohmdMEX2tvCOv3mQ3J5GnWP3yF-FFud0BZZgP5de5PrNA0Yv9z--QOjxy6PxhiGuTChH4LPXXbT3ZyNzslJq7uEF795SV7u717Wj-Xm-eFpfbspDa-asUSK1vB6qwU0DUrQXEhGdV1tRcNrQCE1YG0AqraRlbVV1tlK5rLVnBm-JFcH23zd54RpVLswxfyHpJiQ8qaRNwBZ1RxUJoaUIrZqiK7XcVZA1R602qk_oNUetDqAzrvrwy7mK74cRpWMwz0PFzNBZYP7h8sP_F6QPg</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Xu, Peng</creator><creator>Liu, Jianchang</creator><creator>Shang, Liangliang</creator><creator>Zhang, Wenle</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid></search><sort><creationdate>20220615</creationdate><title>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</title><author>Xu, Peng ; Liu, Jianchang ; Shang, Liangliang ; Zhang, Wenle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuously stirred tank reactors</topic><topic>Data-dependent kernel</topic><topic>Entropy</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Kernel entropy component analysis (KECA)</topic><topic>Kernels</topic><topic>Monitoring</topic><topic>Multiscale principal component analysis (MSPCA)</topic><topic>Principal components analysis</topic><topic>Process monitoring</topic><topic>Unknown fault diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Liu, Jianchang</creatorcontrib><creatorcontrib>Shang, Liangliang</creatorcontrib><creatorcontrib>Zhang, Wenle</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Peng</au><au>Liu, Jianchang</au><au>Shang, Liangliang</au><au>Zhang, Wenle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>196</volume><spage>111181</spage><pages>111181-</pages><artnum>111181</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>Most existing industrial process fault detection and diagnosis (FDD) techniques operate on data collected at a single scale and focus only on known faults. However, actual process data are inherently multiscale and unknown faults are always inevitable during system running. Therefore, they may perform unsatisfactorily. To tackle this problem, this paper develops a decentralized industrial process FDD framework using multiple enhanced supervised kernel entropy component analysis (enhanced SKECA) models, where each model acts as a fault indicator for one specific fault. Faults can be easily diagnosed by monitoring the outputs of all models within the framework. In particular, when new faults are identified, the framework can update itself only by adding the corresponding enhanced SKECA models without a complete rebuilding process. The monitoring results for the continuous stirred tank reactor (CSTR) process show that the proposed framework is effective in diagnosing both known and unknown faults. •A decentralized industrial process FDD framework based on enhanced SKECA is proposed.•Enhanced SKECA boasts high classification accuracy.•Enhanced SKECA shows good robustness to the kernel size parameter.•Enhanced SKECA is sensitive to unknown data.•The proposed framework is effective in diagnosing both known and unknown faults.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2022.111181</doi><orcidid>https://orcid.org/0000-0002-2801-8312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2022-06, Vol.196, p.111181, Article 111181
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2688598511
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Continuously stirred tank reactors
Data-dependent kernel
Entropy
Fault detection
Fault diagnosis
Faults
Kernel entropy component analysis (KECA)
Kernels
Monitoring
Multiscale principal component analysis (MSPCA)
Principal components analysis
Process monitoring
Unknown fault diagnosis
title Industrial process fault detection and diagnosis framework based on enhanced supervised kernel entropy component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industrial%20process%20fault%20detection%20and%20diagnosis%20framework%20based%20on%20enhanced%20supervised%20kernel%20entropy%20component%20analysis&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Xu,%20Peng&rft.date=2022-06-15&rft.volume=196&rft.spage=111181&rft.pages=111181-&rft.artnum=111181&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2022.111181&rft_dat=%3Cproquest_cross%3E2688598511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-e0edc37ba6199e81a36820a74b69371e68a1e7c114f984dd4619d4884dfa32c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688598511&rft_id=info:pmid/&rfr_iscdi=true