Loading…

iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities

"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.71791-71804
Main Authors: Mitra, Alakananda, Bigioi, Dan, Mohanty, Saraju P., Corcoran, Peter, Kougianos, Elias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783
cites cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783
container_end_page 71804
container_issue
container_start_page 71791
container_title IEEE access
container_volume 10
creator Mitra, Alakananda
Bigioi, Dan
Mohanty, Saraju P.
Corcoran, Peter
Kougianos, Elias
description "Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.
doi_str_mv 10.1109/ACCESS.2022.3187686
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688692533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812612</ieee_id><doaj_id>oai_doaj_org_article_238899a7d6ea4712b2cbfdb57687fcdd</doaj_id><sourcerecordid>2688692533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKgVH-Bl4DnrflosllvdWu1UFCoXryEycdqSm1qNj34701dEcOQDDPzXh7zELqkZEwpaa6nbXu3Wo0ZYWzMqaqlkkfojFHZVFxwefwvP0UXfb8m5ahSEvUZeg1zsB7TMb3BU_yUYuyqEm3cWr_LOHYYcJkIsMHTfX732xws5BC3-BZ67_AsvIVcmosZ7mLCqw9IGbchB9-fo5MONr2_-H1H6GV-99w-VMvH-0U7XVZ2QlSuHJk4JY3zpJZGgG3AcAJCGMUAlOSOEiHBSGc4576mpuNOKudqxSdMlHuEFgOvi7DWuxSKhi8dIeifQkxvuogKduM140o1DdROepjUlBlmTeeMKDurO-tc4boauHYpfu59n_U67tO2yNdMKiUbJoqKEeLDlE2x75Pv_n6lRB880YMn-uCJ_vWkoC4HVPDe_yEaRZmkjH8Dz8yFSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688692533</pqid></control><display><type>article</type><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><source>IEEE Xplore Open Access Journals</source><creator>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</creator><creatorcontrib>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</creatorcontrib><description>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3187686</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Computer crime ; convolutional neural network ; Cybersecurity ; deepfake ; Deepfakes ; digital ID ; Face recognition ; facial authentication system ; Internet of Things (IoT) ; lookup table ; Lookup tables ; Medical services ; presentation attack ; Regulation ; Smart cities ; Smart city ; triplet loss ; Urban development</subject><ispartof>IEEE access, 2022, Vol.10, p.71791-71804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</citedby><cites>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</cites><orcidid>0000-0003-2959-6541 ; 0000-0002-8796-4819 ; 0000-0002-7704-2829 ; 0000-0002-1616-7628 ; 0000-0003-1670-4793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812612$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mitra, Alakananda</creatorcontrib><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Mohanty, Saraju P.</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><creatorcontrib>Kougianos, Elias</creatorcontrib><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><title>IEEE access</title><addtitle>Access</addtitle><description>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</description><subject>Authentication</subject><subject>Computer crime</subject><subject>convolutional neural network</subject><subject>Cybersecurity</subject><subject>deepfake</subject><subject>Deepfakes</subject><subject>digital ID</subject><subject>Face recognition</subject><subject>facial authentication system</subject><subject>Internet of Things (IoT)</subject><subject>lookup table</subject><subject>Lookup tables</subject><subject>Medical services</subject><subject>presentation attack</subject><subject>Regulation</subject><subject>Smart cities</subject><subject>Smart city</subject><subject>triplet loss</subject><subject>Urban development</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKgVH-Bl4DnrflosllvdWu1UFCoXryEycdqSm1qNj34701dEcOQDDPzXh7zELqkZEwpaa6nbXu3Wo0ZYWzMqaqlkkfojFHZVFxwefwvP0UXfb8m5ahSEvUZeg1zsB7TMb3BU_yUYuyqEm3cWr_LOHYYcJkIsMHTfX732xws5BC3-BZ67_AsvIVcmosZ7mLCqw9IGbchB9-fo5MONr2_-H1H6GV-99w-VMvH-0U7XVZ2QlSuHJk4JY3zpJZGgG3AcAJCGMUAlOSOEiHBSGc4576mpuNOKudqxSdMlHuEFgOvi7DWuxSKhi8dIeifQkxvuogKduM140o1DdROepjUlBlmTeeMKDurO-tc4boauHYpfu59n_U67tO2yNdMKiUbJoqKEeLDlE2x75Pv_n6lRB880YMn-uCJ_vWkoC4HVPDe_yEaRZmkjH8Dz8yFSQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mitra, Alakananda</creator><creator>Bigioi, Dan</creator><creator>Mohanty, Saraju P.</creator><creator>Corcoran, Peter</creator><creator>Kougianos, Elias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2959-6541</orcidid><orcidid>https://orcid.org/0000-0002-8796-4819</orcidid><orcidid>https://orcid.org/0000-0002-7704-2829</orcidid><orcidid>https://orcid.org/0000-0002-1616-7628</orcidid><orcidid>https://orcid.org/0000-0003-1670-4793</orcidid></search><sort><creationdate>2022</creationdate><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><author>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Authentication</topic><topic>Computer crime</topic><topic>convolutional neural network</topic><topic>Cybersecurity</topic><topic>deepfake</topic><topic>Deepfakes</topic><topic>digital ID</topic><topic>Face recognition</topic><topic>facial authentication system</topic><topic>Internet of Things (IoT)</topic><topic>lookup table</topic><topic>Lookup tables</topic><topic>Medical services</topic><topic>presentation attack</topic><topic>Regulation</topic><topic>Smart cities</topic><topic>Smart city</topic><topic>triplet loss</topic><topic>Urban development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Alakananda</creatorcontrib><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Mohanty, Saraju P.</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><creatorcontrib>Kougianos, Elias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Alakananda</au><au>Bigioi, Dan</au><au>Mohanty, Saraju P.</au><au>Corcoran, Peter</au><au>Kougianos, Elias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>71791</spage><epage>71804</epage><pages>71791-71804</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3187686</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2959-6541</orcidid><orcidid>https://orcid.org/0000-0002-8796-4819</orcidid><orcidid>https://orcid.org/0000-0002-7704-2829</orcidid><orcidid>https://orcid.org/0000-0002-1616-7628</orcidid><orcidid>https://orcid.org/0000-0003-1670-4793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.71791-71804
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2688692533
source IEEE Xplore Open Access Journals
subjects Authentication
Computer crime
convolutional neural network
Cybersecurity
deepfake
Deepfakes
digital ID
Face recognition
facial authentication system
Internet of Things (IoT)
lookup table
Lookup tables
Medical services
presentation attack
Regulation
Smart cities
Smart city
triplet loss
Urban development
title iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iFace%201.1:%20A%20Proof-of-Concept%20of%20a%20Facial%20Authentication%20Based%20Digital%20ID%20for%20Smart%20Cities&rft.jtitle=IEEE%20access&rft.au=Mitra,%20Alakananda&rft.date=2022&rft.volume=10&rft.spage=71791&rft.epage=71804&rft.pages=71791-71804&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3187686&rft_dat=%3Cproquest_cross%3E2688692533%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688692533&rft_id=info:pmid/&rft_ieee_id=9812612&rfr_iscdi=true