Loading…
iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities
"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.71791-71804 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783 |
container_end_page | 71804 |
container_issue | |
container_start_page | 71791 |
container_title | IEEE access |
container_volume | 10 |
creator | Mitra, Alakananda Bigioi, Dan Mohanty, Saraju P. Corcoran, Peter Kougianos, Elias |
description | "Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%. |
doi_str_mv | 10.1109/ACCESS.2022.3187686 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688692533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812612</ieee_id><doaj_id>oai_doaj_org_article_238899a7d6ea4712b2cbfdb57687fcdd</doaj_id><sourcerecordid>2688692533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKgVH-Bl4DnrflosllvdWu1UFCoXryEycdqSm1qNj34701dEcOQDDPzXh7zELqkZEwpaa6nbXu3Wo0ZYWzMqaqlkkfojFHZVFxwefwvP0UXfb8m5ahSEvUZeg1zsB7TMb3BU_yUYuyqEm3cWr_LOHYYcJkIsMHTfX732xws5BC3-BZ67_AsvIVcmosZ7mLCqw9IGbchB9-fo5MONr2_-H1H6GV-99w-VMvH-0U7XVZ2QlSuHJk4JY3zpJZGgG3AcAJCGMUAlOSOEiHBSGc4576mpuNOKudqxSdMlHuEFgOvi7DWuxSKhi8dIeifQkxvuogKduM140o1DdROepjUlBlmTeeMKDurO-tc4boauHYpfu59n_U67tO2yNdMKiUbJoqKEeLDlE2x75Pv_n6lRB880YMn-uCJ_vWkoC4HVPDe_yEaRZmkjH8Dz8yFSQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688692533</pqid></control><display><type>article</type><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><source>IEEE Xplore Open Access Journals</source><creator>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</creator><creatorcontrib>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</creatorcontrib><description>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3187686</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Computer crime ; convolutional neural network ; Cybersecurity ; deepfake ; Deepfakes ; digital ID ; Face recognition ; facial authentication system ; Internet of Things (IoT) ; lookup table ; Lookup tables ; Medical services ; presentation attack ; Regulation ; Smart cities ; Smart city ; triplet loss ; Urban development</subject><ispartof>IEEE access, 2022, Vol.10, p.71791-71804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</citedby><cites>FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</cites><orcidid>0000-0003-2959-6541 ; 0000-0002-8796-4819 ; 0000-0002-7704-2829 ; 0000-0002-1616-7628 ; 0000-0003-1670-4793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812612$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Mitra, Alakananda</creatorcontrib><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Mohanty, Saraju P.</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><creatorcontrib>Kougianos, Elias</creatorcontrib><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><title>IEEE access</title><addtitle>Access</addtitle><description>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</description><subject>Authentication</subject><subject>Computer crime</subject><subject>convolutional neural network</subject><subject>Cybersecurity</subject><subject>deepfake</subject><subject>Deepfakes</subject><subject>digital ID</subject><subject>Face recognition</subject><subject>facial authentication system</subject><subject>Internet of Things (IoT)</subject><subject>lookup table</subject><subject>Lookup tables</subject><subject>Medical services</subject><subject>presentation attack</subject><subject>Regulation</subject><subject>Smart cities</subject><subject>Smart city</subject><subject>triplet loss</subject><subject>Urban development</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKgVH-Bl4DnrflosllvdWu1UFCoXryEycdqSm1qNj34701dEcOQDDPzXh7zELqkZEwpaa6nbXu3Wo0ZYWzMqaqlkkfojFHZVFxwefwvP0UXfb8m5ahSEvUZeg1zsB7TMb3BU_yUYuyqEm3cWr_LOHYYcJkIsMHTfX732xws5BC3-BZ67_AsvIVcmosZ7mLCqw9IGbchB9-fo5MONr2_-H1H6GV-99w-VMvH-0U7XVZ2QlSuHJk4JY3zpJZGgG3AcAJCGMUAlOSOEiHBSGc4576mpuNOKudqxSdMlHuEFgOvi7DWuxSKhi8dIeifQkxvuogKduM140o1DdROepjUlBlmTeeMKDurO-tc4boauHYpfu59n_U67tO2yNdMKiUbJoqKEeLDlE2x75Pv_n6lRB880YMn-uCJ_vWkoC4HVPDe_yEaRZmkjH8Dz8yFSQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Mitra, Alakananda</creator><creator>Bigioi, Dan</creator><creator>Mohanty, Saraju P.</creator><creator>Corcoran, Peter</creator><creator>Kougianos, Elias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2959-6541</orcidid><orcidid>https://orcid.org/0000-0002-8796-4819</orcidid><orcidid>https://orcid.org/0000-0002-7704-2829</orcidid><orcidid>https://orcid.org/0000-0002-1616-7628</orcidid><orcidid>https://orcid.org/0000-0003-1670-4793</orcidid></search><sort><creationdate>2022</creationdate><title>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</title><author>Mitra, Alakananda ; Bigioi, Dan ; Mohanty, Saraju P. ; Corcoran, Peter ; Kougianos, Elias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Authentication</topic><topic>Computer crime</topic><topic>convolutional neural network</topic><topic>Cybersecurity</topic><topic>deepfake</topic><topic>Deepfakes</topic><topic>digital ID</topic><topic>Face recognition</topic><topic>facial authentication system</topic><topic>Internet of Things (IoT)</topic><topic>lookup table</topic><topic>Lookup tables</topic><topic>Medical services</topic><topic>presentation attack</topic><topic>Regulation</topic><topic>Smart cities</topic><topic>Smart city</topic><topic>triplet loss</topic><topic>Urban development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Alakananda</creatorcontrib><creatorcontrib>Bigioi, Dan</creatorcontrib><creatorcontrib>Mohanty, Saraju P.</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><creatorcontrib>Kougianos, Elias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Alakananda</au><au>Bigioi, Dan</au><au>Mohanty, Saraju P.</au><au>Corcoran, Peter</au><au>Kougianos, Elias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>71791</spage><epage>71804</epage><pages>71791-71804</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>"Smart Cities" are a viable option to various issues caused by accelerated urban growth. To make smart cities a reality, smart citizens need to be connected to the "Smart City" through a digital ID. A digital ID enables citizens to utilize smart city facilities such as healthcare, transportation, finance, and energy with ease and efficiency. In this paper, we propose a proof-of-concept of a facial authentication-based end-to-end digital ID system for a smart city. Facial authentication systems are prone to various biometric template attacks and cyber security attacks. Our proposed system is designed to detect the first type of attack, especially deepfake and presentation attacks. Users are authenticated each time they use facilities in a smart city. Facial data is stored in the cloud in a lookup table format with an unidentifiable username. The process is very secure as no data leaves the device during authentication. Our proposed solution achieved 97% accuracy in authentication with a False Rejection Ratio of 2% and False Acceptance Ratio of 3%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3187686</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2959-6541</orcidid><orcidid>https://orcid.org/0000-0002-8796-4819</orcidid><orcidid>https://orcid.org/0000-0002-7704-2829</orcidid><orcidid>https://orcid.org/0000-0002-1616-7628</orcidid><orcidid>https://orcid.org/0000-0003-1670-4793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.71791-71804 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2688692533 |
source | IEEE Xplore Open Access Journals |
subjects | Authentication Computer crime convolutional neural network Cybersecurity deepfake Deepfakes digital ID Face recognition facial authentication system Internet of Things (IoT) lookup table Lookup tables Medical services presentation attack Regulation Smart cities Smart city triplet loss Urban development |
title | iFace 1.1: A Proof-of-Concept of a Facial Authentication Based Digital ID for Smart Cities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=iFace%201.1:%20A%20Proof-of-Concept%20of%20a%20Facial%20Authentication%20Based%20Digital%20ID%20for%20Smart%20Cities&rft.jtitle=IEEE%20access&rft.au=Mitra,%20Alakananda&rft.date=2022&rft.volume=10&rft.spage=71791&rft.epage=71804&rft.pages=71791-71804&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3187686&rft_dat=%3Cproquest_cross%3E2688692533%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-d04d86bde076b5ac9ab30a55b82aa863d1056ab6db333e71bf3d68dd783425783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688692533&rft_id=info:pmid/&rft_ieee_id=9812612&rfr_iscdi=true |