Loading…
Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation
The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTR...
Saved in:
Published in: | Numerical methods for partial differential equations 2022-09, Vol.38 (5), p.1232-1254 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3 |
container_end_page | 1254 |
container_issue | 5 |
container_start_page | 1232 |
container_title | Numerical methods for partial differential equations |
container_volume | 38 |
creator | Yuksel, Gamze K. Eroglu, Simge |
description | The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++. |
doi_str_mv | 10.1002/num.22739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688834195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688834195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqUw8AaWmBjS2k6cxCOquEmlLFRis5zEpi6-FDtRycY78IY8CYGwMv3S0XeO9H8AnGM0wwiRuevsjJAiZQdgghErE5KR_BBMUJGxBFP2fAxOYtwihDHFbALsqrMy6FoYKJwwfdQRegUXQbjXr4_Pla69id5BK9uNb6DyAUZtd0YrLRtoxYuTrd_0TfBN74TVdYR73W6g0U6KAFttJQzSiHfRau9OwZESJsqzvzsF65vrp8Vdsny8vV9cLZOa0IIlMqtEJSgpiCwIU3mJKkqpVCwXuagooirLSkRrlRdD1NCyalSG0oqmiok8rdMpuBh3d8G_dTK2fOu7MPwXOcnLskwzzOhAXY5UHXyMQSq-C9qK0HOM-I9NPtjkvzYHdj6ye21k_z_IV-uHsfENjWJ6FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688834195</pqid></control><display><type>article</type><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><source>Wiley</source><creator>Yuksel, Gamze ; K. Eroglu, Simge</creator><creatorcontrib>Yuksel, Gamze ; K. Eroglu, Simge</creatorcontrib><description>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22739</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Convergence ; Crank-Nicholson method ; Crank–Nicolson method ; Differential equations ; Finite element method ; linear time relaxation ; Magnetohydrodynamics ; Mathematical models ; Numerical analysis ; Regularization</subject><ispartof>Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1232-1254</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</cites><orcidid>0000-0003-3578-2762 ; 0000-0002-4602-2489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuksel, Gamze</creatorcontrib><creatorcontrib>K. Eroglu, Simge</creatorcontrib><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><title>Numerical methods for partial differential equations</title><description>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</description><subject>Convergence</subject><subject>Crank-Nicholson method</subject><subject>Crank–Nicolson method</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>linear time relaxation</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Regularization</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqUw8AaWmBjS2k6cxCOquEmlLFRis5zEpi6-FDtRycY78IY8CYGwMv3S0XeO9H8AnGM0wwiRuevsjJAiZQdgghErE5KR_BBMUJGxBFP2fAxOYtwihDHFbALsqrMy6FoYKJwwfdQRegUXQbjXr4_Pla69id5BK9uNb6DyAUZtd0YrLRtoxYuTrd_0TfBN74TVdYR73W6g0U6KAFttJQzSiHfRau9OwZESJsqzvzsF65vrp8Vdsny8vV9cLZOa0IIlMqtEJSgpiCwIU3mJKkqpVCwXuagooirLSkRrlRdD1NCyalSG0oqmiok8rdMpuBh3d8G_dTK2fOu7MPwXOcnLskwzzOhAXY5UHXyMQSq-C9qK0HOM-I9NPtjkvzYHdj6ye21k_z_IV-uHsfENjWJ6FA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Yuksel, Gamze</creator><creator>K. Eroglu, Simge</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3578-2762</orcidid><orcidid>https://orcid.org/0000-0002-4602-2489</orcidid></search><sort><creationdate>202209</creationdate><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><author>Yuksel, Gamze ; K. Eroglu, Simge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Crank-Nicholson method</topic><topic>Crank–Nicolson method</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>linear time relaxation</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuksel, Gamze</creatorcontrib><creatorcontrib>K. Eroglu, Simge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuksel, Gamze</au><au>K. Eroglu, Simge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2022-09</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1232</spage><epage>1254</epage><pages>1232-1254</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22739</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0003-3578-2762</orcidid><orcidid>https://orcid.org/0000-0002-4602-2489</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1232-1254 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2688834195 |
source | Wiley |
subjects | Convergence Crank-Nicholson method Crank–Nicolson method Differential equations Finite element method linear time relaxation Magnetohydrodynamics Mathematical models Numerical analysis Regularization |
title | Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20Crank%E2%80%93Nicolson%20method%20for%20simplified%20magnetohydrodynamics%20with%20linear%20time%20relaxation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Yuksel,%20Gamze&rft.date=2022-09&rft.volume=38&rft.issue=5&rft.spage=1232&rft.epage=1254&rft.pages=1232-1254&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22739&rft_dat=%3Cproquest_cross%3E2688834195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688834195&rft_id=info:pmid/&rfr_iscdi=true |