Loading…

Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation

The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTR...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations 2022-09, Vol.38 (5), p.1232-1254
Main Authors: Yuksel, Gamze, K. Eroglu, Simge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3
container_end_page 1254
container_issue 5
container_start_page 1232
container_title Numerical methods for partial differential equations
container_volume 38
creator Yuksel, Gamze
K. Eroglu, Simge
description The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.
doi_str_mv 10.1002/num.22739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688834195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688834195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</originalsourceid><addsrcrecordid>eNp1kLtOwzAYhS0EEqUw8AaWmBjS2k6cxCOquEmlLFRis5zEpi6-FDtRycY78IY8CYGwMv3S0XeO9H8AnGM0wwiRuevsjJAiZQdgghErE5KR_BBMUJGxBFP2fAxOYtwihDHFbALsqrMy6FoYKJwwfdQRegUXQbjXr4_Pla69id5BK9uNb6DyAUZtd0YrLRtoxYuTrd_0TfBN74TVdYR73W6g0U6KAFttJQzSiHfRau9OwZESJsqzvzsF65vrp8Vdsny8vV9cLZOa0IIlMqtEJSgpiCwIU3mJKkqpVCwXuagooirLSkRrlRdD1NCyalSG0oqmiok8rdMpuBh3d8G_dTK2fOu7MPwXOcnLskwzzOhAXY5UHXyMQSq-C9qK0HOM-I9NPtjkvzYHdj6ye21k_z_IV-uHsfENjWJ6FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688834195</pqid></control><display><type>article</type><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><source>Wiley</source><creator>Yuksel, Gamze ; K. Eroglu, Simge</creator><creatorcontrib>Yuksel, Gamze ; K. Eroglu, Simge</creatorcontrib><description>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22739</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Convergence ; Crank-Nicholson method ; Crank–Nicolson method ; Differential equations ; Finite element method ; linear time relaxation ; Magnetohydrodynamics ; Mathematical models ; Numerical analysis ; Regularization</subject><ispartof>Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1232-1254</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</cites><orcidid>0000-0003-3578-2762 ; 0000-0002-4602-2489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yuksel, Gamze</creatorcontrib><creatorcontrib>K. Eroglu, Simge</creatorcontrib><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><title>Numerical methods for partial differential equations</title><description>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</description><subject>Convergence</subject><subject>Crank-Nicholson method</subject><subject>Crank–Nicolson method</subject><subject>Differential equations</subject><subject>Finite element method</subject><subject>linear time relaxation</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Regularization</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAYhS0EEqUw8AaWmBjS2k6cxCOquEmlLFRis5zEpi6-FDtRycY78IY8CYGwMv3S0XeO9H8AnGM0wwiRuevsjJAiZQdgghErE5KR_BBMUJGxBFP2fAxOYtwihDHFbALsqrMy6FoYKJwwfdQRegUXQbjXr4_Pla69id5BK9uNb6DyAUZtd0YrLRtoxYuTrd_0TfBN74TVdYR73W6g0U6KAFttJQzSiHfRau9OwZESJsqzvzsF65vrp8Vdsny8vV9cLZOa0IIlMqtEJSgpiCwIU3mJKkqpVCwXuagooirLSkRrlRdD1NCyalSG0oqmiok8rdMpuBh3d8G_dTK2fOu7MPwXOcnLskwzzOhAXY5UHXyMQSq-C9qK0HOM-I9NPtjkvzYHdj6ye21k_z_IV-uHsfENjWJ6FA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Yuksel, Gamze</creator><creator>K. Eroglu, Simge</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3578-2762</orcidid><orcidid>https://orcid.org/0000-0002-4602-2489</orcidid></search><sort><creationdate>202209</creationdate><title>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</title><author>Yuksel, Gamze ; K. Eroglu, Simge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Crank-Nicholson method</topic><topic>Crank–Nicolson method</topic><topic>Differential equations</topic><topic>Finite element method</topic><topic>linear time relaxation</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuksel, Gamze</creatorcontrib><creatorcontrib>K. Eroglu, Simge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuksel, Gamze</au><au>K. Eroglu, Simge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2022-09</date><risdate>2022</risdate><volume>38</volume><issue>5</issue><spage>1232</spage><epage>1254</epage><pages>1232-1254</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>The Crank–Nicolson (CN) finite element method is examined with a linear time relaxation term in this study. The linear differential filter κu−u‾ term is added to simplified magnetohydrodynamics (SMHD) equations for numerical regularization and it introduced SMHD linear time relaxation model (SMHDLTRM). The SMHDLTRM model is discretized by CN method in time and the finite element method in space. The stability and convergency of the method are also conducted. The method is unconditionally stable and convergent under the small time step condition. Additionally, this study summarizes the effectiveness of four methods for SMHD and SMHDLTRM. In previous works SMHD is solved with CN and BE methods and SMHDLTRM is solved with BE method. In this study, the CN solutions of the SMHDLTRM are obtained and compared with the other solutions. All computations are conducted by using FreeFem++.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22739</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0003-3578-2762</orcidid><orcidid>https://orcid.org/0000-0002-4602-2489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2022-09, Vol.38 (5), p.1232-1254
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2688834195
source Wiley
subjects Convergence
Crank-Nicholson method
Crank–Nicolson method
Differential equations
Finite element method
linear time relaxation
Magnetohydrodynamics
Mathematical models
Numerical analysis
Regularization
title Numerical analysis of Crank–Nicolson method for simplified magnetohydrodynamics with linear time relaxation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20Crank%E2%80%93Nicolson%20method%20for%20simplified%20magnetohydrodynamics%20with%20linear%20time%20relaxation&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Yuksel,%20Gamze&rft.date=2022-09&rft.volume=38&rft.issue=5&rft.spage=1232&rft.epage=1254&rft.pages=1232-1254&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22739&rft_dat=%3Cproquest_cross%3E2688834195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2579-e4baba5272e729f680b555ef96a6ab505f44805cf6796ad58bdf403b53f9a63c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2688834195&rft_id=info:pmid/&rfr_iscdi=true