Loading…

Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities

We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 182
Main Authors: Bernini, Federico, Bieganowski, Bartosz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513
container_end_page
container_issue 5
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 61
creator Bernini, Federico
Bieganowski, Bartosz
description We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a r 2 + V ( x ) . As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.
doi_str_mv 10.1007/s00526-022-02297-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9X8adL0KKKrsOBFzyFtp92s3aQmEVk_vVkrePMwDAO_92bmIXRJyTUlpLqJhAgmC8LYoeqqYEdoQUueR8XFMVqQuiwLJmV9is5i3BJChWLlAqUVOAhmtF_Q4dG6N-uGIu0nwGkDPsAOf9q0wWaaRtuaZL2LOHkcU_BuGPfYug5662wCPAXfjLCLsyLawRXtxrghO2LnXTYHE2yyEM_RSW_GCBe_fYleH-5f7h6L9fPq6e52XbSsIqkojSLMlD3veGeYkpWQQhJTEWl4Y0QPjAJTVCrVQgmNUjL_19VlU4mGV4LyJbqaffNp7x8Qk976j-DySs2kqqkQOaxMsZlqg48xQK-nYHcm7DUl-pCuntPVGdY_6eqDiM-imGE3QPiz_kf1DZTxf04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155022</pqid></control><display><type>article</type><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><source>Springer Link</source><creator>Bernini, Federico ; Bieganowski, Bartosz</creator><creatorcontrib>Bernini, Federico ; Bieganowski, Bartosz</creatorcontrib><description>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a r 2 + V ( x ) . As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02297-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Schrodinger equation ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 182</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</cites><orcidid>0000-0002-3441-5488 ; 0000-0003-2037-1573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a r 2 + V ( x ) . As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9X8adL0KKKrsOBFzyFtp92s3aQmEVk_vVkrePMwDAO_92bmIXRJyTUlpLqJhAgmC8LYoeqqYEdoQUueR8XFMVqQuiwLJmV9is5i3BJChWLlAqUVOAhmtF_Q4dG6N-uGIu0nwGkDPsAOf9q0wWaaRtuaZL2LOHkcU_BuGPfYug5662wCPAXfjLCLsyLawRXtxrghO2LnXTYHE2yyEM_RSW_GCBe_fYleH-5f7h6L9fPq6e52XbSsIqkojSLMlD3veGeYkpWQQhJTEWl4Y0QPjAJTVCrVQgmNUjL_19VlU4mGV4LyJbqaffNp7x8Qk976j-DySs2kqqkQOaxMsZlqg48xQK-nYHcm7DUl-pCuntPVGdY_6eqDiM-imGE3QPiz_kf1DZTxf04</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bernini, Federico</creator><creator>Bieganowski, Bartosz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3441-5488</orcidid><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid></search><sort><creationdate>20221001</creationdate><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><author>Bernini, Federico ; Bieganowski, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernini, Federico</au><au>Bieganowski, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>61</volume><issue>5</issue><artnum>182</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a r 2 + V ( x ) . As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02297-2</doi><orcidid>https://orcid.org/0000-0002-3441-5488</orcidid><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 182
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2689155022
source Springer Link
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonlinearity
Schrodinger equation
Systems Theory
Theoretical
title Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20linking-type%20theorem%20with%20applications%20to%20strongly%20indefinite%20problems%20with%20sign-changing%20nonlinearities&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Bernini,%20Federico&rft.date=2022-10-01&rft.volume=61&rft.issue=5&rft.artnum=182&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02297-2&rft_dat=%3Cproquest_cross%3E2689155022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689155022&rft_id=info:pmid/&rfr_iscdi=true