Loading…
Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities
We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation - Δ u + V ( x ) u + a r 2 u = f ( u ) - λ g ( u ) , x = ( y , z ) ∈ R K × R N - K , r = | y | , where 0 ∉ σ - Δ + a...
Saved in:
Published in: | Calculus of variations and partial differential equations 2022-10, Vol.61 (5), Article 182 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 61 |
creator | Bernini, Federico Bieganowski, Bartosz |
description | We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation
-
Δ
u
+
V
(
x
)
u
+
a
r
2
u
=
f
(
u
)
-
λ
g
(
u
)
,
x
=
(
y
,
z
)
∈
R
K
×
R
N
-
K
,
r
=
|
y
|
,
where
0
∉
σ
-
Δ
+
a
r
2
+
V
(
x
)
.
As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem. |
doi_str_mv | 10.1007/s00526-022-02297-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9X8adL0KKKrsOBFzyFtp92s3aQmEVk_vVkrePMwDAO_92bmIXRJyTUlpLqJhAgmC8LYoeqqYEdoQUueR8XFMVqQuiwLJmV9is5i3BJChWLlAqUVOAhmtF_Q4dG6N-uGIu0nwGkDPsAOf9q0wWaaRtuaZL2LOHkcU_BuGPfYug5662wCPAXfjLCLsyLawRXtxrghO2LnXTYHE2yyEM_RSW_GCBe_fYleH-5f7h6L9fPq6e52XbSsIqkojSLMlD3veGeYkpWQQhJTEWl4Y0QPjAJTVCrVQgmNUjL_19VlU4mGV4LyJbqaffNp7x8Qk976j-DySs2kqqkQOaxMsZlqg48xQK-nYHcm7DUl-pCuntPVGdY_6eqDiM-imGE3QPiz_kf1DZTxf04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155022</pqid></control><display><type>article</type><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><source>Springer Link</source><creator>Bernini, Federico ; Bieganowski, Bartosz</creator><creatorcontrib>Bernini, Federico ; Bieganowski, Bartosz</creatorcontrib><description>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation
-
Δ
u
+
V
(
x
)
u
+
a
r
2
u
=
f
(
u
)
-
λ
g
(
u
)
,
x
=
(
y
,
z
)
∈
R
K
×
R
N
-
K
,
r
=
|
y
|
,
where
0
∉
σ
-
Δ
+
a
r
2
+
V
(
x
)
.
As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02297-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nonlinearity ; Schrodinger equation ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 182</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</cites><orcidid>0000-0002-3441-5488 ; 0000-0003-2037-1573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation
-
Δ
u
+
V
(
x
)
u
+
a
r
2
u
=
f
(
u
)
-
λ
g
(
u
)
,
x
=
(
y
,
z
)
∈
R
K
×
R
N
-
K
,
r
=
|
y
|
,
where
0
∉
σ
-
Δ
+
a
r
2
+
V
(
x
)
.
As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinearity</subject><subject>Schrodinger equation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9X8adL0KKKrsOBFzyFtp92s3aQmEVk_vVkrePMwDAO_92bmIXRJyTUlpLqJhAgmC8LYoeqqYEdoQUueR8XFMVqQuiwLJmV9is5i3BJChWLlAqUVOAhmtF_Q4dG6N-uGIu0nwGkDPsAOf9q0wWaaRtuaZL2LOHkcU_BuGPfYug5662wCPAXfjLCLsyLawRXtxrghO2LnXTYHE2yyEM_RSW_GCBe_fYleH-5f7h6L9fPq6e52XbSsIqkojSLMlD3veGeYkpWQQhJTEWl4Y0QPjAJTVCrVQgmNUjL_19VlU4mGV4LyJbqaffNp7x8Qk976j-DySs2kqqkQOaxMsZlqg48xQK-nYHcm7DUl-pCuntPVGdY_6eqDiM-imGE3QPiz_kf1DZTxf04</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Bernini, Federico</creator><creator>Bieganowski, Bartosz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3441-5488</orcidid><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid></search><sort><creationdate>20221001</creationdate><title>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</title><author>Bernini, Federico ; Bieganowski, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinearity</topic><topic>Schrodinger equation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernini, Federico</creatorcontrib><creatorcontrib>Bieganowski, Bartosz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernini, Federico</au><au>Bieganowski, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>61</volume><issue>5</issue><artnum>182</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We show a linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schrödinger equation
-
Δ
u
+
V
(
x
)
u
+
a
r
2
u
=
f
(
u
)
-
λ
g
(
u
)
,
x
=
(
y
,
z
)
∈
R
K
×
R
N
-
K
,
r
=
|
y
|
,
where
0
∉
σ
-
Δ
+
a
r
2
+
V
(
x
)
.
As a consequence we obtain also the existence of solutions to the nonlinear curl-curl problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02297-2</doi><orcidid>https://orcid.org/0000-0002-3441-5488</orcidid><orcidid>https://orcid.org/0000-0003-2037-1573</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2022-10, Vol.61 (5), Article 182 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2689155022 |
source | Springer Link |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonlinearity Schrodinger equation Systems Theory Theoretical |
title | Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20linking-type%20theorem%20with%20applications%20to%20strongly%20indefinite%20problems%20with%20sign-changing%20nonlinearities&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Bernini,%20Federico&rft.date=2022-10-01&rft.volume=61&rft.issue=5&rft.artnum=182&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02297-2&rft_dat=%3Cproquest_cross%3E2689155022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4a802a4f3d3da286756560a706a3ba5fe21e281688ce4eb886669d94b75b37513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689155022&rft_id=info:pmid/&rfr_iscdi=true |