Loading…
Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment
Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial varia...
Saved in:
Published in: | Journal of applied and industrial mathematics 2022, Vol.16 (1), p.105-115 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3 |
container_end_page | 115 |
container_issue | 1 |
container_start_page | 105 |
container_title | Journal of applied and industrial mathematics |
container_volume | 16 |
creator | Moshkin, N. P. |
description | Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time. |
doi_str_mv | 10.1134/S1990478922010100 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52o-drOboxSrhRYFrdclSSc2st3UJEvtvzelogeRHBKePO8MMwhdUnJNKS9unqmUpKhqyRih-ZATNDigcVHJ6vTnXctzNIrRacIpE1wINkDbZRcTqNUeT1u_i9hbrPBCfe6gbfGri8ZDq2JyJv_3boU7UCEbk-AyUy1-8q5LeOfS-kB93yUIpg8BMlUJpzXgWZfdrC78JtMLdGZVG2H0fQ_Rcnr3MnkYzx_vZ5Pb-djkkciYcquZKK0UGiwlkpiaK63pCkptWcV1UVd1nksIYnglitJYqcFowRUIIw0foqtj3W3wHz3E1Lz7PnS5ZcNELWlZUlpkix4tE3yMAWyzDW6jwr6hpDnstvmz25xhx0zMbvcG4bfy_6Evpmx7Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155114</pqid></control><display><type>article</type><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><source>Springer Nature</source><creator>Moshkin, N. P.</creator><creatorcontrib>Moshkin, N. P.</creatorcontrib><description>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478922010100</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Constitutive equations ; Constitutive relationships ; Critical point ; Deceleration ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Numerical integration ; Polynomials ; Pressure dependence ; Rigid walls ; Stagnation point ; Tensors ; Two dimensional flow ; Unsteady flow ; Viscoelastic fluids</subject><ispartof>Journal of applied and industrial mathematics, 2022, Vol.16 (1), p.105-115</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Moshkin, N. P.</creatorcontrib><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</description><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Critical point</subject><subject>Deceleration</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Numerical integration</subject><subject>Polynomials</subject><subject>Pressure dependence</subject><subject>Rigid walls</subject><subject>Stagnation point</subject><subject>Tensors</subject><subject>Two dimensional flow</subject><subject>Unsteady flow</subject><subject>Viscoelastic fluids</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52o-drOboxSrhRYFrdclSSc2st3UJEvtvzelogeRHBKePO8MMwhdUnJNKS9unqmUpKhqyRih-ZATNDigcVHJ6vTnXctzNIrRacIpE1wINkDbZRcTqNUeT1u_i9hbrPBCfe6gbfGri8ZDq2JyJv_3boU7UCEbk-AyUy1-8q5LeOfS-kB93yUIpg8BMlUJpzXgWZfdrC78JtMLdGZVG2H0fQ_Rcnr3MnkYzx_vZ5Pb-djkkciYcquZKK0UGiwlkpiaK63pCkptWcV1UVd1nksIYnglitJYqcFowRUIIw0foqtj3W3wHz3E1Lz7PnS5ZcNELWlZUlpkix4tE3yMAWyzDW6jwr6hpDnstvmz25xhx0zMbvcG4bfy_6Evpmx7Jw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Moshkin, N. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>2022</creationdate><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><author>Moshkin, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Critical point</topic><topic>Deceleration</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Numerical integration</topic><topic>Polynomials</topic><topic>Pressure dependence</topic><topic>Rigid walls</topic><topic>Stagnation point</topic><topic>Tensors</topic><topic>Two dimensional flow</topic><topic>Unsteady flow</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moshkin, N. P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moshkin, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2022</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>105</spage><epage>115</epage><pages>105-115</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478922010100</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2022, Vol.16 (1), p.105-115 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_journals_2689155114 |
source | Springer Nature |
subjects | Constitutive equations Constitutive relationships Critical point Deceleration Mathematics Mathematics and Statistics Nonlinear differential equations Numerical integration Polynomials Pressure dependence Rigid walls Stagnation point Tensors Two dimensional flow Unsteady flow Viscoelastic fluids |
title | Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20Flows%20of%20a%20Maxwell%20Viscoelastic%20Fluid%20near%20a%20Critical%20Point%20with%20a%20Countercurrent%20at%20the%20Initial%20Moment&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Moshkin,%20N.%20P.&rft.date=2022&rft.volume=16&rft.issue=1&rft.spage=105&rft.epage=115&rft.pages=105-115&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478922010100&rft_dat=%3Cproquest_cross%3E2689155114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689155114&rft_id=info:pmid/&rfr_iscdi=true |