Loading…

Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment

Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial varia...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied and industrial mathematics 2022, Vol.16 (1), p.105-115
Main Author: Moshkin, N. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3
container_end_page 115
container_issue 1
container_start_page 105
container_title Journal of applied and industrial mathematics
container_volume 16
creator Moshkin, N. P.
description Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.
doi_str_mv 10.1134/S1990478922010100
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689155114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689155114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52o-drOboxSrhRYFrdclSSc2st3UJEvtvzelogeRHBKePO8MMwhdUnJNKS9unqmUpKhqyRih-ZATNDigcVHJ6vTnXctzNIrRacIpE1wINkDbZRcTqNUeT1u_i9hbrPBCfe6gbfGri8ZDq2JyJv_3boU7UCEbk-AyUy1-8q5LeOfS-kB93yUIpg8BMlUJpzXgWZfdrC78JtMLdGZVG2H0fQ_Rcnr3MnkYzx_vZ5Pb-djkkciYcquZKK0UGiwlkpiaK63pCkptWcV1UVd1nksIYnglitJYqcFowRUIIw0foqtj3W3wHz3E1Lz7PnS5ZcNELWlZUlpkix4tE3yMAWyzDW6jwr6hpDnstvmz25xhx0zMbvcG4bfy_6Evpmx7Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689155114</pqid></control><display><type>article</type><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><source>Springer Nature</source><creator>Moshkin, N. P.</creator><creatorcontrib>Moshkin, N. P.</creatorcontrib><description>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478922010100</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Constitutive equations ; Constitutive relationships ; Critical point ; Deceleration ; Mathematics ; Mathematics and Statistics ; Nonlinear differential equations ; Numerical integration ; Polynomials ; Pressure dependence ; Rigid walls ; Stagnation point ; Tensors ; Two dimensional flow ; Unsteady flow ; Viscoelastic fluids</subject><ispartof>Journal of applied and industrial mathematics, 2022, Vol.16 (1), p.105-115</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Moshkin, N. P.</creatorcontrib><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</description><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Critical point</subject><subject>Deceleration</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear differential equations</subject><subject>Numerical integration</subject><subject>Polynomials</subject><subject>Pressure dependence</subject><subject>Rigid walls</subject><subject>Stagnation point</subject><subject>Tensors</subject><subject>Two dimensional flow</subject><subject>Unsteady flow</subject><subject>Viscoelastic fluids</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52o-drOboxSrhRYFrdclSSc2st3UJEvtvzelogeRHBKePO8MMwhdUnJNKS9unqmUpKhqyRih-ZATNDigcVHJ6vTnXctzNIrRacIpE1wINkDbZRcTqNUeT1u_i9hbrPBCfe6gbfGri8ZDq2JyJv_3boU7UCEbk-AyUy1-8q5LeOfS-kB93yUIpg8BMlUJpzXgWZfdrC78JtMLdGZVG2H0fQ_Rcnr3MnkYzx_vZ5Pb-djkkciYcquZKK0UGiwlkpiaK63pCkptWcV1UVd1nksIYnglitJYqcFowRUIIw0foqtj3W3wHz3E1Lz7PnS5ZcNELWlZUlpkix4tE3yMAWyzDW6jwr6hpDnstvmz25xhx0zMbvcG4bfy_6Evpmx7Jw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Moshkin, N. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>2022</creationdate><title>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</title><author>Moshkin, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Critical point</topic><topic>Deceleration</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear differential equations</topic><topic>Numerical integration</topic><topic>Polynomials</topic><topic>Pressure dependence</topic><topic>Rigid walls</topic><topic>Stagnation point</topic><topic>Tensors</topic><topic>Two dimensional flow</topic><topic>Unsteady flow</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moshkin, N. P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moshkin, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2022</date><risdate>2022</risdate><volume>16</volume><issue>1</issue><spage>105</spage><epage>115</epage><pages>105-115</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>Two-dimensional unsteady stagnation-point flow of a viscoelastic fluid is studied assuming that it obeys the upper-convected Maxwell (UCM) model. The solutions of constitutive equations are found under the assumption that the components of the extra stress tensor are polynomials in the spatial variable along a rigid wall. The class of solutions for unsteady flows in a neighbourhood of the front or rear stagnation point on a plane boundary is considered, and the range of possible behaviors is revealed depending on the initial stage (initial data) and on whether the pressure gradient is an accelerating or decelerating function of time. The velocity and stress tensor component profiles are obtained by numerical integration of the system of nonlinear ordinary differential equations. The solutions of the equations exhibit finite-time singularities depending on the initial data and the type of dependence of pressure gradient on time.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478922010100</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2022, Vol.16 (1), p.105-115
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2689155114
source Springer Nature
subjects Constitutive equations
Constitutive relationships
Critical point
Deceleration
Mathematics
Mathematics and Statistics
Nonlinear differential equations
Numerical integration
Polynomials
Pressure dependence
Rigid walls
Stagnation point
Tensors
Two dimensional flow
Unsteady flow
Viscoelastic fluids
title Unsteady Flows of a Maxwell Viscoelastic Fluid near a Critical Point with a Countercurrent at the Initial Moment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20Flows%20of%20a%20Maxwell%20Viscoelastic%20Fluid%20near%20a%20Critical%20Point%20with%20a%20Countercurrent%20at%20the%20Initial%20Moment&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Moshkin,%20N.%20P.&rft.date=2022&rft.volume=16&rft.issue=1&rft.spage=105&rft.epage=115&rft.pages=105-115&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478922010100&rft_dat=%3Cproquest_cross%3E2689155114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1130-13fb265f96bef1090c83abb1de5bf273b4878199660c37645cf9becb63ae6c9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689155114&rft_id=info:pmid/&rfr_iscdi=true