Loading…

Application of Asymptotic and Numerical Methods to Determine Stability Boundaries of Distributed Systems in a Flow

The reasons and the set of parameters leading to aeroelastic flutter vibrations in distributed systems (DS) are investigated on the basis of asymptotic and numerical methods. The instability is caused by the combined influence of three factors: the drift of perturbations along the DS in the flow, be...

Full description

Saved in:
Bibliographic Details
Published in:Cybernetics and systems analysis 2022-03, Vol.58 (2), p.233-241
Main Authors: Kaliukh, I., Lebid, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reasons and the set of parameters leading to aeroelastic flutter vibrations in distributed systems (DS) are investigated on the basis of asymptotic and numerical methods. The instability is caused by the combined influence of three factors: the drift of perturbations along the DS in the flow, bending stiffness, and the influence of the inertial force, which is a distributed load moving along the DS. An increase in the tensile force and bending stiffness of the DS shifts the instability to a higher-frequency range of vibrations. An increase in the relative flux density and the relative length of the DS expands the region of instability. The presence of the angle of inclination of the DS to the flow adds peculiarities to the balance of forces acting on the DS and to the formation of the boundary ofstability and instability of regions. However, it is not possible to correctly assess its influence within the framework of the considered model and a more detailed further consideration is required. The configuration of the DS in the unstable region indicates the concentration of stresses near its upper end. The results obtained for small angles of inclination of the DS to the flow are consistent with the available results obtained by other authors.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-022-00455-0