Loading…
Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media
Zeolite imidazole frameworks 8(ZIF-8) and modified ones after pyrolysis are highly promising toward oxygen reduction reaction(ORR). Especially, the compositional modification of ZIF-8 is crucial to the enhancement of ORR performance, yet limited to the substitution of skeletal Zn(II) with other cati...
Saved in:
Published in: | Chemical research in Chinese universities 2022-08, Vol.38 (4), p.961-967 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zeolite imidazole frameworks 8(ZIF-8) and modified ones after pyrolysis are highly promising toward oxygen reduction reaction(ORR). Especially, the compositional modification of ZIF-8 is crucial to the enhancement of ORR performance, yet limited to the substitution of skeletal Zn(II) with other cations or simple physical adsorption of cations. Herein, we report the decoration of ZIF-8 with ORR active hemin(FeP) and Co(III) protoporphyrin(CoP)
via
the coordination between the peripheral carboxylic group of FeP and CoP with skeletal Zn(II). This allows well control over the quantity of loaded FeP and CoP, critical to the synthesis of advanced electrocatalysts. Subsequent pyrolysis of FeP and CoP co-decorated ZIF-8 leads to highly active ORR electrocatalysts with a half-wave potential(
E
1/2
) of 0. 913 V(
vs.
RHE) in 0.1 mol/L KOH aq. and an
E
1/2
of 0.803 V(
vs.
RHE) in 0.1 mol/L HClO
4
aq. Moreover, our electrocatalyst shows much more improved and comparable durability in alkaline and acidic media, respectively, during 3000 cycles of cyclic voltammetry(CV) scanning relative to commercial Pt/C. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-021-1199-y |