Loading…
COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey
We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° < ℓ < 40° in Galactic longitude and ∣ b ∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the fir...
Saved in:
Published in: | The Astrophysical journal 2022-07, Vol.933 (2), p.187 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663 |
container_end_page | |
container_issue | 2 |
container_start_page | 187 |
container_title | The Astrophysical journal |
container_volume | 933 |
creator | Rennie, Thomas J. Harper, Stuart E. Dickinson, Clive Philip, Liju Cleary, Kieran A. Bond, Richard J. Borowska, Jowita Breysse, Patrick C. Catha, Morgan Cepeda-Arroita, Roke Chung, Dongwoo T. Church, Sarah E. Dunne, Delaney A. Eriksen, Hans Kristian Foss, Marie Kristine Gaier, Todd Gundersen, Joshua Ott Harris, Andrew I. Hensley, Brandon Hobbs, Richard Ihle, Håvard T. Lamb, James W. Lawrence, Charles R. Lunde, Jonas G. S. Paladini, Roberta Pearson, Timothy J. Rasmussen, Maren Readhead, Anthony C. S. Stutzer, Nils-Ole Watts, Duncan J. Wehus, Ingunn Kathrine Woody, David P. |
description | We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
ℓ
< 40° in Galactic longitude and ∣
b
∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H
ii
regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H
ii
contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span
ℓ
∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution. |
doi_str_mv | 10.3847/1538-4357/ac63c8 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2689188554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689188554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRsFb37hwQd6ad92NZSl9QsVAVd8N0OsHUmMSZVOi_NyE-NuLqci_n-7gcAC4xGlDF5BBzqhJGuRxaJ6hTR6D3czoGPYQQSwSVz6fgLMZduxKte2A-vr8breDEhvwA1y7zhfMD-LQYwBGcZiHWcFmWr9DWsH7xsINnNreuzhxc5bbwcL0PH_5wDk5Sm0d_8TX74HE6eRjPk-X9bDEeLRPHEKuTlChEtRI4tVpiJL0jCDPuts2OON5sGLdMUZwqkm6x1jTV0mJBBRaSEyFoH1x1vS5ksc4KU5TBGowUJ0YLxFriuiOqUL7vfazNrtyHonnKEKE0Vopz1lDou6eMMfjUVCF7s-HQdJnWqGn1mVaf6Yw2kdsukpXVb-c_-M0fuK12RlNqiMFKmmqb0k9qvn2c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689188554</pqid></control><display><type>article</type><title>COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey</title><source>NORA - Norwegian Open Research Archives</source><source>EZB Electronic Journals Library</source><creator>Rennie, Thomas J. ; Harper, Stuart E. ; Dickinson, Clive ; Philip, Liju ; Cleary, Kieran A. ; Bond, Richard J. ; Borowska, Jowita ; Breysse, Patrick C. ; Catha, Morgan ; Cepeda-Arroita, Roke ; Chung, Dongwoo T. ; Church, Sarah E. ; Dunne, Delaney A. ; Eriksen, Hans Kristian ; Foss, Marie Kristine ; Gaier, Todd ; Gundersen, Joshua Ott ; Harris, Andrew I. ; Hensley, Brandon ; Hobbs, Richard ; Ihle, Håvard T. ; Lamb, James W. ; Lawrence, Charles R. ; Lunde, Jonas G. S. ; Paladini, Roberta ; Pearson, Timothy J. ; Rasmussen, Maren ; Readhead, Anthony C. S. ; Stutzer, Nils-Ole ; Watts, Duncan J. ; Wehus, Ingunn Kathrine ; Woody, David P.</creator><creatorcontrib>Rennie, Thomas J. ; Harper, Stuart E. ; Dickinson, Clive ; Philip, Liju ; Cleary, Kieran A. ; Bond, Richard J. ; Borowska, Jowita ; Breysse, Patrick C. ; Catha, Morgan ; Cepeda-Arroita, Roke ; Chung, Dongwoo T. ; Church, Sarah E. ; Dunne, Delaney A. ; Eriksen, Hans Kristian ; Foss, Marie Kristine ; Gaier, Todd ; Gundersen, Joshua Ott ; Harris, Andrew I. ; Hensley, Brandon ; Hobbs, Richard ; Ihle, Håvard T. ; Lamb, James W. ; Lawrence, Charles R. ; Lunde, Jonas G. S. ; Paladini, Roberta ; Pearson, Timothy J. ; Rasmussen, Maren ; Readhead, Anthony C. S. ; Stutzer, Nils-Ole ; Watts, Duncan J. ; Wehus, Ingunn Kathrine ; Woody, David P. ; COMAP Collaboration</creatorcontrib><description>We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
ℓ
< 40° in Galactic longitude and ∣
b
∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H
ii
regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H
ii
contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span
ℓ
∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac63c8</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Angular resolution ; Astrophysics ; Dust emission ; Electron temperatures ; Flux density ; H II regions ; Hydrogen ; Interstellar medium ; Microwave emission ; Milky Way Galaxy ; Polls & surveys ; Radio continuum emission ; Radio telescopes ; Supernova ; Supernova remnants ; Surveys</subject><ispartof>The Astrophysical journal, 2022-07, Vol.933 (2), p.187</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663</citedby><cites>FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663</cites><orcidid>0000-0001-7911-5553 ; 0000-0001-7449-4638 ; 0000-0001-7612-2379 ; 0000-0001-6159-9174 ; 0000-0002-1667-3897 ; 0000-0002-5158-243X ; 0000-0002-9043-2645 ; 0000-0003-2332-5281 ; 0000-0001-8896-3159 ; 0000-0003-3420-7766 ; 0000-0002-5437-6121 ; 0000-0001-8382-5275 ; 0000-0001-5301-1377 ; 0000-0003-2358-9949 ; 0000-0002-5959-1285 ; 0000-0002-5223-8315 ; 0000-0002-0045-442X ; 0000-0001-5213-6231 ; 0000-0003-2618-6504 ; 0000-0002-8214-8265 ; 0000-0001-9152-961X ; 0000-0003-3821-7275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Rennie, Thomas J.</creatorcontrib><creatorcontrib>Harper, Stuart E.</creatorcontrib><creatorcontrib>Dickinson, Clive</creatorcontrib><creatorcontrib>Philip, Liju</creatorcontrib><creatorcontrib>Cleary, Kieran A.</creatorcontrib><creatorcontrib>Bond, Richard J.</creatorcontrib><creatorcontrib>Borowska, Jowita</creatorcontrib><creatorcontrib>Breysse, Patrick C.</creatorcontrib><creatorcontrib>Catha, Morgan</creatorcontrib><creatorcontrib>Cepeda-Arroita, Roke</creatorcontrib><creatorcontrib>Chung, Dongwoo T.</creatorcontrib><creatorcontrib>Church, Sarah E.</creatorcontrib><creatorcontrib>Dunne, Delaney A.</creatorcontrib><creatorcontrib>Eriksen, Hans Kristian</creatorcontrib><creatorcontrib>Foss, Marie Kristine</creatorcontrib><creatorcontrib>Gaier, Todd</creatorcontrib><creatorcontrib>Gundersen, Joshua Ott</creatorcontrib><creatorcontrib>Harris, Andrew I.</creatorcontrib><creatorcontrib>Hensley, Brandon</creatorcontrib><creatorcontrib>Hobbs, Richard</creatorcontrib><creatorcontrib>Ihle, Håvard T.</creatorcontrib><creatorcontrib>Lamb, James W.</creatorcontrib><creatorcontrib>Lawrence, Charles R.</creatorcontrib><creatorcontrib>Lunde, Jonas G. S.</creatorcontrib><creatorcontrib>Paladini, Roberta</creatorcontrib><creatorcontrib>Pearson, Timothy J.</creatorcontrib><creatorcontrib>Rasmussen, Maren</creatorcontrib><creatorcontrib>Readhead, Anthony C. S.</creatorcontrib><creatorcontrib>Stutzer, Nils-Ole</creatorcontrib><creatorcontrib>Watts, Duncan J.</creatorcontrib><creatorcontrib>Wehus, Ingunn Kathrine</creatorcontrib><creatorcontrib>Woody, David P.</creatorcontrib><creatorcontrib>COMAP Collaboration</creatorcontrib><title>COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
ℓ
< 40° in Galactic longitude and ∣
b
∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H
ii
regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H
ii
contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span
ℓ
∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution.</description><subject>Angular resolution</subject><subject>Astrophysics</subject><subject>Dust emission</subject><subject>Electron temperatures</subject><subject>Flux density</subject><subject>H II regions</subject><subject>Hydrogen</subject><subject>Interstellar medium</subject><subject>Microwave emission</subject><subject>Milky Way Galaxy</subject><subject>Polls & surveys</subject><subject>Radio continuum emission</subject><subject>Radio telescopes</subject><subject>Supernova</subject><subject>Supernova remnants</subject><subject>Surveys</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kEtLw0AURgdRsFb37hwQd6ad92NZSl9QsVAVd8N0OsHUmMSZVOi_NyE-NuLqci_n-7gcAC4xGlDF5BBzqhJGuRxaJ6hTR6D3czoGPYQQSwSVz6fgLMZduxKte2A-vr8breDEhvwA1y7zhfMD-LQYwBGcZiHWcFmWr9DWsH7xsINnNreuzhxc5bbwcL0PH_5wDk5Sm0d_8TX74HE6eRjPk-X9bDEeLRPHEKuTlChEtRI4tVpiJL0jCDPuts2OON5sGLdMUZwqkm6x1jTV0mJBBRaSEyFoH1x1vS5ksc4KU5TBGowUJ0YLxFriuiOqUL7vfazNrtyHonnKEKE0Vopz1lDou6eMMfjUVCF7s-HQdJnWqGn1mVaf6Yw2kdsukpXVb-c_-M0fuK12RlNqiMFKmmqb0k9qvn2c</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Rennie, Thomas J.</creator><creator>Harper, Stuart E.</creator><creator>Dickinson, Clive</creator><creator>Philip, Liju</creator><creator>Cleary, Kieran A.</creator><creator>Bond, Richard J.</creator><creator>Borowska, Jowita</creator><creator>Breysse, Patrick C.</creator><creator>Catha, Morgan</creator><creator>Cepeda-Arroita, Roke</creator><creator>Chung, Dongwoo T.</creator><creator>Church, Sarah E.</creator><creator>Dunne, Delaney A.</creator><creator>Eriksen, Hans Kristian</creator><creator>Foss, Marie Kristine</creator><creator>Gaier, Todd</creator><creator>Gundersen, Joshua Ott</creator><creator>Harris, Andrew I.</creator><creator>Hensley, Brandon</creator><creator>Hobbs, Richard</creator><creator>Ihle, Håvard T.</creator><creator>Lamb, James W.</creator><creator>Lawrence, Charles R.</creator><creator>Lunde, Jonas G. S.</creator><creator>Paladini, Roberta</creator><creator>Pearson, Timothy J.</creator><creator>Rasmussen, Maren</creator><creator>Readhead, Anthony C. S.</creator><creator>Stutzer, Nils-Ole</creator><creator>Watts, Duncan J.</creator><creator>Wehus, Ingunn Kathrine</creator><creator>Woody, David P.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-7911-5553</orcidid><orcidid>https://orcid.org/0000-0001-7449-4638</orcidid><orcidid>https://orcid.org/0000-0001-7612-2379</orcidid><orcidid>https://orcid.org/0000-0001-6159-9174</orcidid><orcidid>https://orcid.org/0000-0002-1667-3897</orcidid><orcidid>https://orcid.org/0000-0002-5158-243X</orcidid><orcidid>https://orcid.org/0000-0002-9043-2645</orcidid><orcidid>https://orcid.org/0000-0003-2332-5281</orcidid><orcidid>https://orcid.org/0000-0001-8896-3159</orcidid><orcidid>https://orcid.org/0000-0003-3420-7766</orcidid><orcidid>https://orcid.org/0000-0002-5437-6121</orcidid><orcidid>https://orcid.org/0000-0001-8382-5275</orcidid><orcidid>https://orcid.org/0000-0001-5301-1377</orcidid><orcidid>https://orcid.org/0000-0003-2358-9949</orcidid><orcidid>https://orcid.org/0000-0002-5959-1285</orcidid><orcidid>https://orcid.org/0000-0002-5223-8315</orcidid><orcidid>https://orcid.org/0000-0002-0045-442X</orcidid><orcidid>https://orcid.org/0000-0001-5213-6231</orcidid><orcidid>https://orcid.org/0000-0003-2618-6504</orcidid><orcidid>https://orcid.org/0000-0002-8214-8265</orcidid><orcidid>https://orcid.org/0000-0001-9152-961X</orcidid><orcidid>https://orcid.org/0000-0003-3821-7275</orcidid></search><sort><creationdate>20220701</creationdate><title>COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey</title><author>Rennie, Thomas J. ; Harper, Stuart E. ; Dickinson, Clive ; Philip, Liju ; Cleary, Kieran A. ; Bond, Richard J. ; Borowska, Jowita ; Breysse, Patrick C. ; Catha, Morgan ; Cepeda-Arroita, Roke ; Chung, Dongwoo T. ; Church, Sarah E. ; Dunne, Delaney A. ; Eriksen, Hans Kristian ; Foss, Marie Kristine ; Gaier, Todd ; Gundersen, Joshua Ott ; Harris, Andrew I. ; Hensley, Brandon ; Hobbs, Richard ; Ihle, Håvard T. ; Lamb, James W. ; Lawrence, Charles R. ; Lunde, Jonas G. S. ; Paladini, Roberta ; Pearson, Timothy J. ; Rasmussen, Maren ; Readhead, Anthony C. S. ; Stutzer, Nils-Ole ; Watts, Duncan J. ; Wehus, Ingunn Kathrine ; Woody, David P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular resolution</topic><topic>Astrophysics</topic><topic>Dust emission</topic><topic>Electron temperatures</topic><topic>Flux density</topic><topic>H II regions</topic><topic>Hydrogen</topic><topic>Interstellar medium</topic><topic>Microwave emission</topic><topic>Milky Way Galaxy</topic><topic>Polls & surveys</topic><topic>Radio continuum emission</topic><topic>Radio telescopes</topic><topic>Supernova</topic><topic>Supernova remnants</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rennie, Thomas J.</creatorcontrib><creatorcontrib>Harper, Stuart E.</creatorcontrib><creatorcontrib>Dickinson, Clive</creatorcontrib><creatorcontrib>Philip, Liju</creatorcontrib><creatorcontrib>Cleary, Kieran A.</creatorcontrib><creatorcontrib>Bond, Richard J.</creatorcontrib><creatorcontrib>Borowska, Jowita</creatorcontrib><creatorcontrib>Breysse, Patrick C.</creatorcontrib><creatorcontrib>Catha, Morgan</creatorcontrib><creatorcontrib>Cepeda-Arroita, Roke</creatorcontrib><creatorcontrib>Chung, Dongwoo T.</creatorcontrib><creatorcontrib>Church, Sarah E.</creatorcontrib><creatorcontrib>Dunne, Delaney A.</creatorcontrib><creatorcontrib>Eriksen, Hans Kristian</creatorcontrib><creatorcontrib>Foss, Marie Kristine</creatorcontrib><creatorcontrib>Gaier, Todd</creatorcontrib><creatorcontrib>Gundersen, Joshua Ott</creatorcontrib><creatorcontrib>Harris, Andrew I.</creatorcontrib><creatorcontrib>Hensley, Brandon</creatorcontrib><creatorcontrib>Hobbs, Richard</creatorcontrib><creatorcontrib>Ihle, Håvard T.</creatorcontrib><creatorcontrib>Lamb, James W.</creatorcontrib><creatorcontrib>Lawrence, Charles R.</creatorcontrib><creatorcontrib>Lunde, Jonas G. S.</creatorcontrib><creatorcontrib>Paladini, Roberta</creatorcontrib><creatorcontrib>Pearson, Timothy J.</creatorcontrib><creatorcontrib>Rasmussen, Maren</creatorcontrib><creatorcontrib>Readhead, Anthony C. S.</creatorcontrib><creatorcontrib>Stutzer, Nils-Ole</creatorcontrib><creatorcontrib>Watts, Duncan J.</creatorcontrib><creatorcontrib>Wehus, Ingunn Kathrine</creatorcontrib><creatorcontrib>Woody, David P.</creatorcontrib><creatorcontrib>COMAP Collaboration</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rennie, Thomas J.</au><au>Harper, Stuart E.</au><au>Dickinson, Clive</au><au>Philip, Liju</au><au>Cleary, Kieran A.</au><au>Bond, Richard J.</au><au>Borowska, Jowita</au><au>Breysse, Patrick C.</au><au>Catha, Morgan</au><au>Cepeda-Arroita, Roke</au><au>Chung, Dongwoo T.</au><au>Church, Sarah E.</au><au>Dunne, Delaney A.</au><au>Eriksen, Hans Kristian</au><au>Foss, Marie Kristine</au><au>Gaier, Todd</au><au>Gundersen, Joshua Ott</au><au>Harris, Andrew I.</au><au>Hensley, Brandon</au><au>Hobbs, Richard</au><au>Ihle, Håvard T.</au><au>Lamb, James W.</au><au>Lawrence, Charles R.</au><au>Lunde, Jonas G. S.</au><au>Paladini, Roberta</au><au>Pearson, Timothy J.</au><au>Rasmussen, Maren</au><au>Readhead, Anthony C. S.</au><au>Stutzer, Nils-Ole</au><au>Watts, Duncan J.</au><au>Wehus, Ingunn Kathrine</au><au>Woody, David P.</au><aucorp>COMAP Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>933</volume><issue>2</issue><spage>187</spage><pages>187-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° <
ℓ
< 40° in Galactic longitude and ∣
b
∣ < 1.°5 in Galactic latitude with an angular resolution of 4.′5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H
ii
regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H
ii
contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span
ℓ
∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4.′5 resolution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac63c8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7911-5553</orcidid><orcidid>https://orcid.org/0000-0001-7449-4638</orcidid><orcidid>https://orcid.org/0000-0001-7612-2379</orcidid><orcidid>https://orcid.org/0000-0001-6159-9174</orcidid><orcidid>https://orcid.org/0000-0002-1667-3897</orcidid><orcidid>https://orcid.org/0000-0002-5158-243X</orcidid><orcidid>https://orcid.org/0000-0002-9043-2645</orcidid><orcidid>https://orcid.org/0000-0003-2332-5281</orcidid><orcidid>https://orcid.org/0000-0001-8896-3159</orcidid><orcidid>https://orcid.org/0000-0003-3420-7766</orcidid><orcidid>https://orcid.org/0000-0002-5437-6121</orcidid><orcidid>https://orcid.org/0000-0001-8382-5275</orcidid><orcidid>https://orcid.org/0000-0001-5301-1377</orcidid><orcidid>https://orcid.org/0000-0003-2358-9949</orcidid><orcidid>https://orcid.org/0000-0002-5959-1285</orcidid><orcidid>https://orcid.org/0000-0002-5223-8315</orcidid><orcidid>https://orcid.org/0000-0002-0045-442X</orcidid><orcidid>https://orcid.org/0000-0001-5213-6231</orcidid><orcidid>https://orcid.org/0000-0003-2618-6504</orcidid><orcidid>https://orcid.org/0000-0002-8214-8265</orcidid><orcidid>https://orcid.org/0000-0001-9152-961X</orcidid><orcidid>https://orcid.org/0000-0003-3821-7275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2022-07, Vol.933 (2), p.187 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2689188554 |
source | NORA - Norwegian Open Research Archives; EZB Electronic Journals Library |
subjects | Angular resolution Astrophysics Dust emission Electron temperatures Flux density H II regions Hydrogen Interstellar medium Microwave emission Milky Way Galaxy Polls & surveys Radio continuum emission Radio telescopes Supernova Supernova remnants Surveys |
title | COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMAP%20Early%20Science.%20VI.%20A%20First%20Look%20at%20the%20COMAP%20Galactic%20Plane%20Survey&rft.jtitle=The%20Astrophysical%20journal&rft.au=Rennie,%20Thomas%20J.&rft.aucorp=COMAP%20Collaboration&rft.date=2022-07-01&rft.volume=933&rft.issue=2&rft.spage=187&rft.pages=187-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac63c8&rft_dat=%3Cproquest_iop_j%3E2689188554%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-f28039861fa97107ec20145cdfa9051bb45a4831f82fd1993f97a163616752663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689188554&rft_id=info:pmid/&rfr_iscdi=true |