Loading…
Low-rank statistical finite elements for scalable model-data synthesis
Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori...
Saved in:
Published in: | Journal of computational physics 2022-08, Vol.463, p.111261, Article 111261 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833 |
container_end_page | |
container_issue | |
container_start_page | 111261 |
container_title | Journal of computational physics |
container_volume | 463 |
creator | Duffin, Connor Cripps, Edward Stemler, Thomas Girolami, Mark |
description | Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems.
•Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing. |
doi_str_mv | 10.1016/j.jcp.2022.111261 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689213627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999122003230</els_id><sourcerecordid>2689213627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU7wOPFLrFDFS6rEBtaW64yFQ5oU2wX170kV1qxmMffcGR1CroFWQEHcdlXndhWjjFUAwASckAVQTUsmQZySBaUMSq01nJOLlDpKqeKNWpDH9fhTRjt8FinbHFIOzvaFD0PIWGCPWxxyKvwYizQt7KbHYju22JetzbZIhyF_YArpkpx52ye8-ptL8v748LZ6LtevTy-r-3XpaqFyqT13rQSooZG6EVRQ6iTbcPQSlW-kEkJr3nLvOJfOA-ONAyZrIRVVUtX1ktzMvbs4fu0xZdON-zhMJw0TSjOoxRRfEphTLo4pRfRmF8PWxoMBao66TGcmXeaoy8y6JuZuZnB6_ztgNMkFHBy2IaLLph3DP_QvJXxwoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689213627</pqid></control><display><type>article</type><title>Low-rank statistical finite elements for scalable model-data synthesis</title><source>Elsevier</source><creator>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</creator><creatorcontrib>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</creatorcontrib><description>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems.
•Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2022.111261</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Bayesian analysis ; Bayesian filtering ; Bayesian inverse problems ; Complex systems ; Computational physics ; Covariance matrix ; Embedding ; Finite element method ; Finite element methods ; Mathematical analysis ; Mathematical models ; Reaction-diffusion ; Statistical analysis</subject><ispartof>Journal of computational physics, 2022-08, Vol.463, p.111261, Article 111261</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Aug 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</citedby><cites>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</cites><orcidid>0000-0003-1230-3028 ; 0000-0003-2485-6666 ; 0000-0003-3008-253X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Duffin, Connor</creatorcontrib><creatorcontrib>Cripps, Edward</creatorcontrib><creatorcontrib>Stemler, Thomas</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><title>Low-rank statistical finite elements for scalable model-data synthesis</title><title>Journal of computational physics</title><description>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems.
•Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</description><subject>Bayesian analysis</subject><subject>Bayesian filtering</subject><subject>Bayesian inverse problems</subject><subject>Complex systems</subject><subject>Computational physics</subject><subject>Covariance matrix</subject><subject>Embedding</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reaction-diffusion</subject><subject>Statistical analysis</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU7wOPFLrFDFS6rEBtaW64yFQ5oU2wX170kV1qxmMffcGR1CroFWQEHcdlXndhWjjFUAwASckAVQTUsmQZySBaUMSq01nJOLlDpKqeKNWpDH9fhTRjt8FinbHFIOzvaFD0PIWGCPWxxyKvwYizQt7KbHYju22JetzbZIhyF_YArpkpx52ye8-ptL8v748LZ6LtevTy-r-3XpaqFyqT13rQSooZG6EVRQ6iTbcPQSlW-kEkJr3nLvOJfOA-ONAyZrIRVVUtX1ktzMvbs4fu0xZdON-zhMJw0TSjOoxRRfEphTLo4pRfRmF8PWxoMBao66TGcmXeaoy8y6JuZuZnB6_ztgNMkFHBy2IaLLph3DP_QvJXxwoA</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Duffin, Connor</creator><creator>Cripps, Edward</creator><creator>Stemler, Thomas</creator><creator>Girolami, Mark</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1230-3028</orcidid><orcidid>https://orcid.org/0000-0003-2485-6666</orcidid><orcidid>https://orcid.org/0000-0003-3008-253X</orcidid></search><sort><creationdate>20220815</creationdate><title>Low-rank statistical finite elements for scalable model-data synthesis</title><author>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian filtering</topic><topic>Bayesian inverse problems</topic><topic>Complex systems</topic><topic>Computational physics</topic><topic>Covariance matrix</topic><topic>Embedding</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reaction-diffusion</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffin, Connor</creatorcontrib><creatorcontrib>Cripps, Edward</creatorcontrib><creatorcontrib>Stemler, Thomas</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duffin, Connor</au><au>Cripps, Edward</au><au>Stemler, Thomas</au><au>Girolami, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank statistical finite elements for scalable model-data synthesis</atitle><jtitle>Journal of computational physics</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>463</volume><spage>111261</spage><pages>111261-</pages><artnum>111261</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems.
•Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2022.111261</doi><orcidid>https://orcid.org/0000-0003-1230-3028</orcidid><orcidid>https://orcid.org/0000-0003-2485-6666</orcidid><orcidid>https://orcid.org/0000-0003-3008-253X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2022-08, Vol.463, p.111261, Article 111261 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2689213627 |
source | Elsevier |
subjects | Bayesian analysis Bayesian filtering Bayesian inverse problems Complex systems Computational physics Covariance matrix Embedding Finite element method Finite element methods Mathematical analysis Mathematical models Reaction-diffusion Statistical analysis |
title | Low-rank statistical finite elements for scalable model-data synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20statistical%20finite%20elements%20for%20scalable%20model-data%20synthesis&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Duffin,%20Connor&rft.date=2022-08-15&rft.volume=463&rft.spage=111261&rft.pages=111261-&rft.artnum=111261&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2022.111261&rft_dat=%3Cproquest_cross%3E2689213627%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689213627&rft_id=info:pmid/&rfr_iscdi=true |