Loading…

Low-rank statistical finite elements for scalable model-data synthesis

Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2022-08, Vol.463, p.111261, Article 111261
Main Authors: Duffin, Connor, Cripps, Edward, Stemler, Thomas, Girolami, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833
cites cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833
container_end_page
container_issue
container_start_page 111261
container_title Journal of computational physics
container_volume 463
creator Duffin, Connor
Cripps, Edward
Stemler, Thomas
Girolami, Mark
description Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems. •Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.
doi_str_mv 10.1016/j.jcp.2022.111261
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689213627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999122003230</els_id><sourcerecordid>2689213627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU7wOPFLrFDFS6rEBtaW64yFQ5oU2wX170kV1qxmMffcGR1CroFWQEHcdlXndhWjjFUAwASckAVQTUsmQZySBaUMSq01nJOLlDpKqeKNWpDH9fhTRjt8FinbHFIOzvaFD0PIWGCPWxxyKvwYizQt7KbHYju22JetzbZIhyF_YArpkpx52ye8-ptL8v748LZ6LtevTy-r-3XpaqFyqT13rQSooZG6EVRQ6iTbcPQSlW-kEkJr3nLvOJfOA-ONAyZrIRVVUtX1ktzMvbs4fu0xZdON-zhMJw0TSjOoxRRfEphTLo4pRfRmF8PWxoMBao66TGcmXeaoy8y6JuZuZnB6_ztgNMkFHBy2IaLLph3DP_QvJXxwoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689213627</pqid></control><display><type>article</type><title>Low-rank statistical finite elements for scalable model-data synthesis</title><source>Elsevier</source><creator>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</creator><creatorcontrib>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</creatorcontrib><description>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems. •Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2022.111261</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Bayesian analysis ; Bayesian filtering ; Bayesian inverse problems ; Complex systems ; Computational physics ; Covariance matrix ; Embedding ; Finite element method ; Finite element methods ; Mathematical analysis ; Mathematical models ; Reaction-diffusion ; Statistical analysis</subject><ispartof>Journal of computational physics, 2022-08, Vol.463, p.111261, Article 111261</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Aug 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</citedby><cites>FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</cites><orcidid>0000-0003-1230-3028 ; 0000-0003-2485-6666 ; 0000-0003-3008-253X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Duffin, Connor</creatorcontrib><creatorcontrib>Cripps, Edward</creatorcontrib><creatorcontrib>Stemler, Thomas</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><title>Low-rank statistical finite elements for scalable model-data synthesis</title><title>Journal of computational physics</title><description>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems. •Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</description><subject>Bayesian analysis</subject><subject>Bayesian filtering</subject><subject>Bayesian inverse problems</subject><subject>Complex systems</subject><subject>Computational physics</subject><subject>Covariance matrix</subject><subject>Embedding</subject><subject>Finite element method</subject><subject>Finite element methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reaction-diffusion</subject><subject>Statistical analysis</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU7wOPFLrFDFS6rEBtaW64yFQ5oU2wX170kV1qxmMffcGR1CroFWQEHcdlXndhWjjFUAwASckAVQTUsmQZySBaUMSq01nJOLlDpKqeKNWpDH9fhTRjt8FinbHFIOzvaFD0PIWGCPWxxyKvwYizQt7KbHYju22JetzbZIhyF_YArpkpx52ye8-ptL8v748LZ6LtevTy-r-3XpaqFyqT13rQSooZG6EVRQ6iTbcPQSlW-kEkJr3nLvOJfOA-ONAyZrIRVVUtX1ktzMvbs4fu0xZdON-zhMJw0TSjOoxRRfEphTLo4pRfRmF8PWxoMBao66TGcmXeaoy8y6JuZuZnB6_ztgNMkFHBy2IaLLph3DP_QvJXxwoA</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Duffin, Connor</creator><creator>Cripps, Edward</creator><creator>Stemler, Thomas</creator><creator>Girolami, Mark</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1230-3028</orcidid><orcidid>https://orcid.org/0000-0003-2485-6666</orcidid><orcidid>https://orcid.org/0000-0003-3008-253X</orcidid></search><sort><creationdate>20220815</creationdate><title>Low-rank statistical finite elements for scalable model-data synthesis</title><author>Duffin, Connor ; Cripps, Edward ; Stemler, Thomas ; Girolami, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian filtering</topic><topic>Bayesian inverse problems</topic><topic>Complex systems</topic><topic>Computational physics</topic><topic>Covariance matrix</topic><topic>Embedding</topic><topic>Finite element method</topic><topic>Finite element methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reaction-diffusion</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duffin, Connor</creatorcontrib><creatorcontrib>Cripps, Edward</creatorcontrib><creatorcontrib>Stemler, Thomas</creatorcontrib><creatorcontrib>Girolami, Mark</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duffin, Connor</au><au>Cripps, Edward</au><au>Stemler, Thomas</au><au>Girolami, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank statistical finite elements for scalable model-data synthesis</atitle><jtitle>Journal of computational physics</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>463</volume><spage>111261</spage><pages>111261-</pages><artnum>111261</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Statistical learning additions to physically derived mathematical models are gaining traction in the literature. A recent approach has been to augment the underlying physics of the governing equations with data driven Bayesian statistical methodology. Coined statFEM, the method acknowledges a priori model misspecification, by embedding stochastic forcing within the governing equations. Upon receipt of additional data, the posterior distribution of the discretised finite element solution is updated using classical Bayesian filtering techniques. The resultant posterior jointly quantifies uncertainty associated with the ubiquitous problem of model misspecification and the data intended to represent the true process of interest. Despite this appeal, computational scalability is a challenge to statFEM's application to high-dimensional problems typically experienced in physical and industrial contexts. This article overcomes this hurdle by embedding a low-rank approximation of the underlying dense covariance matrix, obtained from the leading order modes of the full-rank alternative. Demonstrated on a series of reaction-diffusion problems of increasing dimension, using experimental and simulated data, the method reconstructs the sparsely observed data-generating processes with minimal loss of information, in both the posterior mean and variance, paving the way for further integration of physical and probabilistic approaches to complex systems. •Computationally scalable statistical FEM, with uncertainty quantification.•Online, sequential Bayesian updating of FEM solutions.•Low-rank approximation to Kalman filtering.•Illustrated on reaction-diffusion processes.•Makes use of parallelisation and GPU computing.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2022.111261</doi><orcidid>https://orcid.org/0000-0003-1230-3028</orcidid><orcidid>https://orcid.org/0000-0003-2485-6666</orcidid><orcidid>https://orcid.org/0000-0003-3008-253X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2022-08, Vol.463, p.111261, Article 111261
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2689213627
source Elsevier
subjects Bayesian analysis
Bayesian filtering
Bayesian inverse problems
Complex systems
Computational physics
Covariance matrix
Embedding
Finite element method
Finite element methods
Mathematical analysis
Mathematical models
Reaction-diffusion
Statistical analysis
title Low-rank statistical finite elements for scalable model-data synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20statistical%20finite%20elements%20for%20scalable%20model-data%20synthesis&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Duffin,%20Connor&rft.date=2022-08-15&rft.volume=463&rft.spage=111261&rft.pages=111261-&rft.artnum=111261&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2022.111261&rft_dat=%3Cproquest_cross%3E2689213627%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-9f5cd71131479460600c72b5ef7e8f47866995d5fc557cf1254c1273678087833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689213627&rft_id=info:pmid/&rfr_iscdi=true