Loading…
Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field
•Trellis network data collection platform enables name disambiguation.•Trellis network data collection platform enables multiple language interviews.•Trellis report allows for real-time monitoring of data collection.•Trellis network data collection platform can be used offline in remote areas. Trell...
Saved in:
Published in: | Social networks 2022-05, Vol.69, p.293-306 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-776a594f1fa1ad5168f7aae758f2d1c4f383d6a1cb1d42a9f259fefdebd312543 |
container_end_page | 306 |
container_issue | |
container_start_page | 293 |
container_title | Social networks |
container_volume | 69 |
creator | Lungeanu, Alina McKnight, Mark Negron, Rennie Munar, Wolfgang Christakis, Nicholas A. Contractor, Noshir S. |
description | •Trellis network data collection platform enables name disambiguation.•Trellis network data collection platform enables multiple language interviews.•Trellis report allows for real-time monitoring of data collection.•Trellis network data collection platform can be used offline in remote areas.
Trellis is a mobile platform created by the Human Nature Lab at the Yale Institute for Network Science to collect high-quality, location-aware, off-line/online, multi-lingual, multi-relational social network and behavior data in hard-to-reach communities. Respondents use Trellis to identify their social contacts by name and photograph, a procedure especially useful in low-literacy populations or in contexts where names may be similar or confusing. We use social network data collected from 1,969 adult respondents in two villages in Kenya to demonstrate Trellis’ ability to provide unprecedented metadata to monitor and report on the data collection process including artifactual variability based on surveyors, time of day, or location. |
doi_str_mv | 10.1016/j.socnet.2022.01.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2689717721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873322000041</els_id><sourcerecordid>2689717721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-776a594f1fa1ad5168f7aae758f2d1c4f383d6a1cb1d42a9f259fefdebd312543</originalsourceid><addsrcrecordid>eNp9kEtrGzEUhUVoIa7bf9CFoOuZ6moe0nRRKCFpA4ZCiddCka5sOcrIluSY_PvIuOuszuY8OB8hX4G1wGD8vmtzNDOWljPOWwYtY_0VWYAUU8MB4ANZsE7IRoquuyafct4xxkYBckGe_uE--bnQ6H7Qdfbzhj4kDMFnmqMrJ52Qlkhx3urZIN36zbY5HHXw5ZUGnTbYZKMD0rp-iumJWl00NTEENMXHmfqZli1S5zHYz-Sj0yHjl_-6JOu724ebP83q7-_7m1-rxsAkSyPEqIepd-A0aDvAKJ3QGsUgHbdgetfJzo4azCPYnuvJ8WFy6Cw-2g740HdL8u3Su0_xcMRc1C4e01wnFR_lJEAIDtXVX1wmxZwTOlVBPOv0qoCpM1a1Uxes6oxVMVAVa439vMSwPnjxmFQ2Hisb61P9rGz07xe8AfsOhGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689717721</pqid></control><display><type>article</type><title>Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection</source><source>Sociological Abstracts</source><creator>Lungeanu, Alina ; McKnight, Mark ; Negron, Rennie ; Munar, Wolfgang ; Christakis, Nicholas A. ; Contractor, Noshir S.</creator><creatorcontrib>Lungeanu, Alina ; McKnight, Mark ; Negron, Rennie ; Munar, Wolfgang ; Christakis, Nicholas A. ; Contractor, Noshir S.</creatorcontrib><description>•Trellis network data collection platform enables name disambiguation.•Trellis network data collection platform enables multiple language interviews.•Trellis report allows for real-time monitoring of data collection.•Trellis network data collection platform can be used offline in remote areas.
Trellis is a mobile platform created by the Human Nature Lab at the Yale Institute for Network Science to collect high-quality, location-aware, off-line/online, multi-lingual, multi-relational social network and behavior data in hard-to-reach communities. Respondents use Trellis to identify their social contacts by name and photograph, a procedure especially useful in low-literacy populations or in contexts where names may be similar or confusing. We use social network data collected from 1,969 adult respondents in two villages in Kenya to demonstrate Trellis’ ability to provide unprecedented metadata to monitor and report on the data collection process including artifactual variability based on surveyors, time of day, or location.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2022.01.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data collection ; Graphical interface ; Human nature ; Mobile social network survey technologies ; Online surveys ; Rural network data collection ; Social networks ; Software ; Software data collection ; Time of day ; Villages</subject><ispartof>Social networks, 2022-05, Vol.69, p.293-306</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-776a594f1fa1ad5168f7aae758f2d1c4f383d6a1cb1d42a9f259fefdebd312543</cites><orcidid>0000-0002-9234-987X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33774</link.rule.ids></links><search><creatorcontrib>Lungeanu, Alina</creatorcontrib><creatorcontrib>McKnight, Mark</creatorcontrib><creatorcontrib>Negron, Rennie</creatorcontrib><creatorcontrib>Munar, Wolfgang</creatorcontrib><creatorcontrib>Christakis, Nicholas A.</creatorcontrib><creatorcontrib>Contractor, Noshir S.</creatorcontrib><title>Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field</title><title>Social networks</title><description>•Trellis network data collection platform enables name disambiguation.•Trellis network data collection platform enables multiple language interviews.•Trellis report allows for real-time monitoring of data collection.•Trellis network data collection platform can be used offline in remote areas.
Trellis is a mobile platform created by the Human Nature Lab at the Yale Institute for Network Science to collect high-quality, location-aware, off-line/online, multi-lingual, multi-relational social network and behavior data in hard-to-reach communities. Respondents use Trellis to identify their social contacts by name and photograph, a procedure especially useful in low-literacy populations or in contexts where names may be similar or confusing. We use social network data collected from 1,969 adult respondents in two villages in Kenya to demonstrate Trellis’ ability to provide unprecedented metadata to monitor and report on the data collection process including artifactual variability based on surveyors, time of day, or location.</description><subject>Data collection</subject><subject>Graphical interface</subject><subject>Human nature</subject><subject>Mobile social network survey technologies</subject><subject>Online surveys</subject><subject>Rural network data collection</subject><subject>Social networks</subject><subject>Software</subject><subject>Software data collection</subject><subject>Time of day</subject><subject>Villages</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNp9kEtrGzEUhUVoIa7bf9CFoOuZ6moe0nRRKCFpA4ZCiddCka5sOcrIluSY_PvIuOuszuY8OB8hX4G1wGD8vmtzNDOWljPOWwYtY_0VWYAUU8MB4ANZsE7IRoquuyafct4xxkYBckGe_uE--bnQ6H7Qdfbzhj4kDMFnmqMrJ52Qlkhx3urZIN36zbY5HHXw5ZUGnTbYZKMD0rp-iumJWl00NTEENMXHmfqZli1S5zHYz-Sj0yHjl_-6JOu724ebP83q7-_7m1-rxsAkSyPEqIepd-A0aDvAKJ3QGsUgHbdgetfJzo4azCPYnuvJ8WFy6Cw-2g740HdL8u3Su0_xcMRc1C4e01wnFR_lJEAIDtXVX1wmxZwTOlVBPOv0qoCpM1a1Uxes6oxVMVAVa439vMSwPnjxmFQ2Hisb61P9rGz07xe8AfsOhGc</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Lungeanu, Alina</creator><creator>McKnight, Mark</creator><creator>Negron, Rennie</creator><creator>Munar, Wolfgang</creator><creator>Christakis, Nicholas A.</creator><creator>Contractor, Noshir S.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><orcidid>https://orcid.org/0000-0002-9234-987X</orcidid></search><sort><creationdate>202205</creationdate><title>Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field</title><author>Lungeanu, Alina ; McKnight, Mark ; Negron, Rennie ; Munar, Wolfgang ; Christakis, Nicholas A. ; Contractor, Noshir S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-776a594f1fa1ad5168f7aae758f2d1c4f383d6a1cb1d42a9f259fefdebd312543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data collection</topic><topic>Graphical interface</topic><topic>Human nature</topic><topic>Mobile social network survey technologies</topic><topic>Online surveys</topic><topic>Rural network data collection</topic><topic>Social networks</topic><topic>Software</topic><topic>Software data collection</topic><topic>Time of day</topic><topic>Villages</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lungeanu, Alina</creatorcontrib><creatorcontrib>McKnight, Mark</creatorcontrib><creatorcontrib>Negron, Rennie</creatorcontrib><creatorcontrib>Munar, Wolfgang</creatorcontrib><creatorcontrib>Christakis, Nicholas A.</creatorcontrib><creatorcontrib>Contractor, Noshir S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lungeanu, Alina</au><au>McKnight, Mark</au><au>Negron, Rennie</au><au>Munar, Wolfgang</au><au>Christakis, Nicholas A.</au><au>Contractor, Noshir S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field</atitle><jtitle>Social networks</jtitle><date>2022-05</date><risdate>2022</risdate><volume>69</volume><spage>293</spage><epage>306</epage><pages>293-306</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><abstract>•Trellis network data collection platform enables name disambiguation.•Trellis network data collection platform enables multiple language interviews.•Trellis report allows for real-time monitoring of data collection.•Trellis network data collection platform can be used offline in remote areas.
Trellis is a mobile platform created by the Human Nature Lab at the Yale Institute for Network Science to collect high-quality, location-aware, off-line/online, multi-lingual, multi-relational social network and behavior data in hard-to-reach communities. Respondents use Trellis to identify their social contacts by name and photograph, a procedure especially useful in low-literacy populations or in contexts where names may be similar or confusing. We use social network data collected from 1,969 adult respondents in two villages in Kenya to demonstrate Trellis’ ability to provide unprecedented metadata to monitor and report on the data collection process including artifactual variability based on surveyors, time of day, or location.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2022.01.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9234-987X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-8733 |
ispartof | Social networks, 2022-05, Vol.69, p.293-306 |
issn | 0378-8733 1879-2111 |
language | eng |
recordid | cdi_proquest_journals_2689717721 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection; Sociological Abstracts |
subjects | Data collection Graphical interface Human nature Mobile social network survey technologies Online surveys Rural network data collection Social networks Software Software data collection Time of day Villages |
title | Reprint of: Using Trellis software to enhance high-quality large-scale network data collection in the field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A47%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprint%20of:%20Using%20Trellis%20software%20to%20enhance%20high-quality%20large-scale%20network%20data%20collection%20in%20the%20field&rft.jtitle=Social%20networks&rft.au=Lungeanu,%20Alina&rft.date=2022-05&rft.volume=69&rft.spage=293&rft.epage=306&rft.pages=293-306&rft.issn=0378-8733&rft.eissn=1879-2111&rft_id=info:doi/10.1016/j.socnet.2022.01.004&rft_dat=%3Cproquest_cross%3E2689717721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-776a594f1fa1ad5168f7aae758f2d1c4f383d6a1cb1d42a9f259fefdebd312543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2689717721&rft_id=info:pmid/&rfr_iscdi=true |