Loading…

An Efficient Discrete Landweber Iteration for Nonlinear Problems

The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied and computational mathematics 2022-08, Vol.8 (4), Article 189
Main Authors: Rajan, M. P., Jose, Jaise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193
cites cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193
container_end_page
container_issue 4
container_start_page
container_title International journal of applied and computational mathematics
container_volume 8
creator Rajan, M. P.
Jose, Jaise
description The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form G ( x ) = y in the context of the Landweber method x ~ k + 1 = x ~ k + G ′ ( x ~ k ) ∗ ( y ~ - G ( x ~ k ) ) , in which a finite-dimensional approximation A m ( x ~ k ) is used in place of Fréchet derivative G ′ ( x ~ k ) . This modified approximation A m ( x ~ k ) yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.
doi_str_mv 10.1007/s40819-022-01390-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690237629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690237629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWGpfwFXAdfRPMpPLzlKrFgZ1oeswkyYypU1qMkV8e1NHcOfqnMW5wIfQJYVrCiBvcgWKagKMEaBcAxEnaMKo1qSWWpwWz6viKfBzNMt5AwCMVhKYmqDbecBL73vbuzDguz7b5AaHmzasP13nEl4NLrVDHwP2MeGnGLZ9cG3CLyl2W7fLF-jMt9vsZr86RW_3y9fFI2meH1aLeUNseReEq9ZKzSln3nshqQIlqeSeWs_5umOMdaKrldNrEMAqV9uuojW3SouKV1TzKboad_cpfhxcHswmHlIol4YJDYxLwY4pNqZsijkn580-9bs2fRkK5gjLjLBMgWV-YBlRSnws5RIO7y79Tf_T-gZi9Gnv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690237629</pqid></control><display><type>article</type><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><source>Springer Nature</source><creator>Rajan, M. P. ; Jose, Jaise</creator><creatorcontrib>Rajan, M. P. ; Jose, Jaise</creatorcontrib><description>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form G ( x ) = y in the context of the Landweber method x ~ k + 1 = x ~ k + G ′ ( x ~ k ) ∗ ( y ~ - G ( x ~ k ) ) , in which a finite-dimensional approximation A m ( x ~ k ) is used in place of Fréchet derivative G ′ ( x ~ k ) . This modified approximation A m ( x ~ k ) yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01390-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Approximation ; Computational mathematics ; Computational Science and Engineering ; Convergence ; Iterative methods ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Nuclear Energy ; Operations Research/Decision Theory ; Operators (mathematics) ; Original Paper ; Sparse matrices ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 189</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</citedby><cites>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</cites><orcidid>0000-0003-2402-0164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rajan, M. P.</creatorcontrib><creatorcontrib>Jose, Jaise</creatorcontrib><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form G ( x ) = y in the context of the Landweber method x ~ k + 1 = x ~ k + G ′ ( x ~ k ) ∗ ( y ~ - G ( x ~ k ) ) , in which a finite-dimensional approximation A m ( x ~ k ) is used in place of Fréchet derivative G ′ ( x ~ k ) . This modified approximation A m ( x ~ k ) yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Convergence</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Sparse matrices</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWGpfwFXAdfRPMpPLzlKrFgZ1oeswkyYypU1qMkV8e1NHcOfqnMW5wIfQJYVrCiBvcgWKagKMEaBcAxEnaMKo1qSWWpwWz6viKfBzNMt5AwCMVhKYmqDbecBL73vbuzDguz7b5AaHmzasP13nEl4NLrVDHwP2MeGnGLZ9cG3CLyl2W7fLF-jMt9vsZr86RW_3y9fFI2meH1aLeUNseReEq9ZKzSln3nshqQIlqeSeWs_5umOMdaKrldNrEMAqV9uuojW3SouKV1TzKboad_cpfhxcHswmHlIol4YJDYxLwY4pNqZsijkn580-9bs2fRkK5gjLjLBMgWV-YBlRSnws5RIO7y79Tf_T-gZi9Gnv</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Rajan, M. P.</creator><creator>Jose, Jaise</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2402-0164</orcidid></search><sort><creationdate>20220801</creationdate><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><author>Rajan, M. P. ; Jose, Jaise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Convergence</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Sparse matrices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajan, M. P.</creatorcontrib><creatorcontrib>Jose, Jaise</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajan, M. P.</au><au>Jose, Jaise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Discrete Landweber Iteration for Nonlinear Problems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><artnum>189</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form G ( x ) = y in the context of the Landweber method x ~ k + 1 = x ~ k + G ′ ( x ~ k ) ∗ ( y ~ - G ( x ~ k ) ) , in which a finite-dimensional approximation A m ( x ~ k ) is used in place of Fréchet derivative G ′ ( x ~ k ) . This modified approximation A m ( x ~ k ) yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01390-6</doi><orcidid>https://orcid.org/0000-0003-2402-0164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 189
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2690237629
source Springer Nature
subjects Applications of Mathematics
Applied mathematics
Approximation
Computational mathematics
Computational Science and Engineering
Convergence
Iterative methods
Mathematical analysis
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinearity
Nuclear Energy
Operations Research/Decision Theory
Operators (mathematics)
Original Paper
Sparse matrices
Theoretical
title An Efficient Discrete Landweber Iteration for Nonlinear Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Discrete%20Landweber%20Iteration%20for%20Nonlinear%20Problems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Rajan,%20M.%20P.&rft.date=2022-08-01&rft.volume=8&rft.issue=4&rft.artnum=189&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01390-6&rft_dat=%3Cproquest_cross%3E2690237629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2690237629&rft_id=info:pmid/&rfr_iscdi=true