Loading…
An Efficient Discrete Landweber Iteration for Nonlinear Problems
The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified...
Saved in:
Published in: | International journal of applied and computational mathematics 2022-08, Vol.8 (4), Article 189 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193 |
---|---|
cites | cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | International journal of applied and computational mathematics |
container_volume | 8 |
creator | Rajan, M. P. Jose, Jaise |
description | The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form
G
(
x
)
=
y
in the context of the Landweber method
x
~
k
+
1
=
x
~
k
+
G
′
(
x
~
k
)
∗
(
y
~
-
G
(
x
~
k
)
)
,
in which a finite-dimensional approximation
A
m
(
x
~
k
)
is used in place of Fréchet derivative
G
′
(
x
~
k
)
. This modified approximation
A
m
(
x
~
k
)
yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples. |
doi_str_mv | 10.1007/s40819-022-01390-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2690237629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2690237629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWGpfwFXAdfRPMpPLzlKrFgZ1oeswkyYypU1qMkV8e1NHcOfqnMW5wIfQJYVrCiBvcgWKagKMEaBcAxEnaMKo1qSWWpwWz6viKfBzNMt5AwCMVhKYmqDbecBL73vbuzDguz7b5AaHmzasP13nEl4NLrVDHwP2MeGnGLZ9cG3CLyl2W7fLF-jMt9vsZr86RW_3y9fFI2meH1aLeUNseReEq9ZKzSln3nshqQIlqeSeWs_5umOMdaKrldNrEMAqV9uuojW3SouKV1TzKboad_cpfhxcHswmHlIol4YJDYxLwY4pNqZsijkn580-9bs2fRkK5gjLjLBMgWV-YBlRSnws5RIO7y79Tf_T-gZi9Gnv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2690237629</pqid></control><display><type>article</type><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><source>Springer Nature</source><creator>Rajan, M. P. ; Jose, Jaise</creator><creatorcontrib>Rajan, M. P. ; Jose, Jaise</creatorcontrib><description>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form
G
(
x
)
=
y
in the context of the Landweber method
x
~
k
+
1
=
x
~
k
+
G
′
(
x
~
k
)
∗
(
y
~
-
G
(
x
~
k
)
)
,
in which a finite-dimensional approximation
A
m
(
x
~
k
)
is used in place of Fréchet derivative
G
′
(
x
~
k
)
. This modified approximation
A
m
(
x
~
k
)
yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-022-01390-6</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Approximation ; Computational mathematics ; Computational Science and Engineering ; Convergence ; Iterative methods ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Nonlinearity ; Nuclear Energy ; Operations Research/Decision Theory ; Operators (mathematics) ; Original Paper ; Sparse matrices ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 189</ispartof><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature India Private Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</citedby><cites>FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</cites><orcidid>0000-0003-2402-0164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rajan, M. P.</creatorcontrib><creatorcontrib>Jose, Jaise</creatorcontrib><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form
G
(
x
)
=
y
in the context of the Landweber method
x
~
k
+
1
=
x
~
k
+
G
′
(
x
~
k
)
∗
(
y
~
-
G
(
x
~
k
)
)
,
in which a finite-dimensional approximation
A
m
(
x
~
k
)
is used in place of Fréchet derivative
G
′
(
x
~
k
)
. This modified approximation
A
m
(
x
~
k
)
yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Convergence</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Original Paper</subject><subject>Sparse matrices</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWGpfwFXAdfRPMpPLzlKrFgZ1oeswkyYypU1qMkV8e1NHcOfqnMW5wIfQJYVrCiBvcgWKagKMEaBcAxEnaMKo1qSWWpwWz6viKfBzNMt5AwCMVhKYmqDbecBL73vbuzDguz7b5AaHmzasP13nEl4NLrVDHwP2MeGnGLZ9cG3CLyl2W7fLF-jMt9vsZr86RW_3y9fFI2meH1aLeUNseReEq9ZKzSln3nshqQIlqeSeWs_5umOMdaKrldNrEMAqV9uuojW3SouKV1TzKboad_cpfhxcHswmHlIol4YJDYxLwY4pNqZsijkn580-9bs2fRkK5gjLjLBMgWV-YBlRSnws5RIO7y79Tf_T-gZi9Gnv</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Rajan, M. P.</creator><creator>Jose, Jaise</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2402-0164</orcidid></search><sort><creationdate>20220801</creationdate><title>An Efficient Discrete Landweber Iteration for Nonlinear Problems</title><author>Rajan, M. P. ; Jose, Jaise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Convergence</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Original Paper</topic><topic>Sparse matrices</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajan, M. P.</creatorcontrib><creatorcontrib>Jose, Jaise</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajan, M. P.</au><au>Jose, Jaise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Discrete Landweber Iteration for Nonlinear Problems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><artnum>189</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>The amount of discrete information required to compute the solution to various mathematical problems has been of great interest to the research community in the recent past. The projection schemes are one of the methods traditionally used for discretizing the problem. This paper presents a modified projection scheme for solving the nonlinear equation of the form
G
(
x
)
=
y
in the context of the Landweber method
x
~
k
+
1
=
x
~
k
+
G
′
(
x
~
k
)
∗
(
y
~
-
G
(
x
~
k
)
)
,
in which a finite-dimensional approximation
A
m
(
x
~
k
)
is used in place of Fréchet derivative
G
′
(
x
~
k
)
. This modified approximation
A
m
(
x
~
k
)
yields a sparse matrix structure and requires substantially fewer inner products compared to other known discretization schemes. We derive the convergence and convergence rate results under some nonlinearity conditions on the operator and an appropriate stopping rule. Finally, we illustrate the theoretical results by providing numerical examples.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-022-01390-6</doi><orcidid>https://orcid.org/0000-0003-2402-0164</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2022-08, Vol.8 (4), Article 189 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2690237629 |
source | Springer Nature |
subjects | Applications of Mathematics Applied mathematics Approximation Computational mathematics Computational Science and Engineering Convergence Iterative methods Mathematical analysis Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nonlinear equations Nonlinearity Nuclear Energy Operations Research/Decision Theory Operators (mathematics) Original Paper Sparse matrices Theoretical |
title | An Efficient Discrete Landweber Iteration for Nonlinear Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Discrete%20Landweber%20Iteration%20for%20Nonlinear%20Problems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=Rajan,%20M.%20P.&rft.date=2022-08-01&rft.volume=8&rft.issue=4&rft.artnum=189&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-022-01390-6&rft_dat=%3Cproquest_cross%3E2690237629%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2346-38ac793132fff6718087173f1cf33db222b6b58e9d06024e5cb4153c896434193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2690237629&rft_id=info:pmid/&rfr_iscdi=true |