Loading…

On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions

This article develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle and the popular multivariate normal distribution. These recursions o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and graphical statistics 2022-04, Vol.31 (2), p.455-465
Main Authors: Morales, Christian E. Galarza, Matos, Larissa A., Dey, Dipak K., Lachos, Victor H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3
cites cdi_FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3
container_end_page 465
container_issue 2
container_start_page 455
container_title Journal of computational and graphical statistics
container_volume 31
creator Morales, Christian E. Galarza
Matos, Larissa A.
Dey, Dipak K.
Lachos, Victor H.
description This article develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which results much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. Finally, we present an application in finance where multivariate tail conditional expectation (MTCE) for SN distributed data is calculated using analytical expressions involving normal left-truncated moments. The R MomTrunc package provides these new efficient methods for practitioners. Supplementary files for this article are available online.
doi_str_mv 10.1080/10618600.2021.2000869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691151619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691151619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwE5Aice6I0zZNb6B9ANLGDowDpyjNUimjS0aSMvbvSbVxxQd_6bEtv0lyC3gEmOF7wBQYxXhEMIHoMGa0OksGUGRlSkoozmMembSHLpMr7zeRAVqVg-RjadDCbpUJHtkGzWy7VmskzBpNbFe3B7RynZEixOaia4P-Fk7HCk1_gjI9-vap9umrdVvRoon2wem6C9oaf51cNKL16uYUh8n7bLoaP6fz5dPL-HGeyowVISUCJC0YZSTLc5HVjGFSljXOy1yWDBSJJmuiCDCmqhyaguUyo4oSpgijdTZM7o57d85-dcoHvrGdM_EkJ7QCKIBCFaniSElnvXeq4Tunt8IdOGDeq8j_VOS9ivykYpx7OM5p0_RP7q1r1zyIQ2td44SR2vPs_xW_Td13Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691151619</pqid></control><display><type>article</type><title>On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Morales, Christian E. Galarza ; Matos, Larissa A. ; Dey, Dipak K. ; Lachos, Victor H.</creator><creatorcontrib>Morales, Christian E. Galarza ; Matos, Larissa A. ; Dey, Dipak K. ; Lachos, Victor H.</creatorcontrib><description>This article develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which results much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. Finally, we present an application in finance where multivariate tail conditional expectation (MTCE) for SN distributed data is calculated using analytical expressions involving normal left-truncated moments. The R MomTrunc package provides these new efficient methods for practitioners. Supplementary files for this article are available online.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.2021.2000869</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Algorithms ; Computation ; Extended skew-normal distribution ; Folded normal distribution ; Integrals ; Mathematical analysis ; Multivariate analysis ; Normal distribution ; Product moments ; Skewed distributions ; Truncated distributions</subject><ispartof>Journal of computational and graphical statistics, 2022-04, Vol.31 (2), p.455-465</ispartof><rights>2022 The Mathematical Association of America 2022</rights><rights>2022 The Mathematical Association of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3</citedby><cites>FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3</cites><orcidid>0000-0002-9367-9731 ; 0000-0002-7239-2459 ; 0000-0002-4818-6006 ; 0000-0002-2635-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Morales, Christian E. Galarza</creatorcontrib><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Dey, Dipak K.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><title>On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions</title><title>Journal of computational and graphical statistics</title><description>This article develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which results much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. Finally, we present an application in finance where multivariate tail conditional expectation (MTCE) for SN distributed data is calculated using analytical expressions involving normal left-truncated moments. The R MomTrunc package provides these new efficient methods for practitioners. Supplementary files for this article are available online.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Extended skew-normal distribution</subject><subject>Folded normal distribution</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Multivariate analysis</subject><subject>Normal distribution</subject><subject>Product moments</subject><subject>Skewed distributions</subject><subject>Truncated distributions</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmPwE5Aice6I0zZNb6B9ANLGDowDpyjNUimjS0aSMvbvSbVxxQd_6bEtv0lyC3gEmOF7wBQYxXhEMIHoMGa0OksGUGRlSkoozmMembSHLpMr7zeRAVqVg-RjadDCbpUJHtkGzWy7VmskzBpNbFe3B7RynZEixOaia4P-Fk7HCk1_gjI9-vap9umrdVvRoon2wem6C9oaf51cNKL16uYUh8n7bLoaP6fz5dPL-HGeyowVISUCJC0YZSTLc5HVjGFSljXOy1yWDBSJJmuiCDCmqhyaguUyo4oSpgijdTZM7o57d85-dcoHvrGdM_EkJ7QCKIBCFaniSElnvXeq4Tunt8IdOGDeq8j_VOS9ivykYpx7OM5p0_RP7q1r1zyIQ2td44SR2vPs_xW_Td13Pw</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Morales, Christian E. Galarza</creator><creator>Matos, Larissa A.</creator><creator>Dey, Dipak K.</creator><creator>Lachos, Victor H.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-9367-9731</orcidid><orcidid>https://orcid.org/0000-0002-7239-2459</orcidid><orcidid>https://orcid.org/0000-0002-4818-6006</orcidid><orcidid>https://orcid.org/0000-0002-2635-0901</orcidid></search><sort><creationdate>20220403</creationdate><title>On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions</title><author>Morales, Christian E. Galarza ; Matos, Larissa A. ; Dey, Dipak K. ; Lachos, Victor H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Extended skew-normal distribution</topic><topic>Folded normal distribution</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Multivariate analysis</topic><topic>Normal distribution</topic><topic>Product moments</topic><topic>Skewed distributions</topic><topic>Truncated distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Christian E. Galarza</creatorcontrib><creatorcontrib>Matos, Larissa A.</creatorcontrib><creatorcontrib>Dey, Dipak K.</creatorcontrib><creatorcontrib>Lachos, Victor H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Christian E. Galarza</au><au>Matos, Larissa A.</au><au>Dey, Dipak K.</au><au>Lachos, Victor H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2022-04-03</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>455</spage><epage>465</epage><pages>455-465</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>This article develops recurrence relations for integrals that relate the density of multivariate extended skew-normal (ESN) distribution, including the well-known skew-normal (SN) distribution introduced by Azzalini and Dalla-Valle and the popular multivariate normal distribution. These recursions offer a fast computation of arbitrary order product moments of the multivariate truncated extended skew-normal and multivariate folded extended skew-normal distributions with the product moments as a byproduct. In addition to the recurrence approach, we realized that any arbitrary moment of the truncated multivariate extended skew-normal distribution can be computed using a corresponding moment of a truncated multivariate normal distribution, pointing the way to a faster algorithm since a less number of integrals is required for its computation which results much simpler to evaluate. Since there are several methods available to calculate the first two moments of a multivariate truncated normal distribution, we propose an optimized method that offers a better performance in terms of time and accuracy, in addition to consider extreme cases in which other methods fail. Finally, we present an application in finance where multivariate tail conditional expectation (MTCE) for SN distributed data is calculated using analytical expressions involving normal left-truncated moments. The R MomTrunc package provides these new efficient methods for practitioners. Supplementary files for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10618600.2021.2000869</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9367-9731</orcidid><orcidid>https://orcid.org/0000-0002-7239-2459</orcidid><orcidid>https://orcid.org/0000-0002-4818-6006</orcidid><orcidid>https://orcid.org/0000-0002-2635-0901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2022-04, Vol.31 (2), p.455-465
issn 1061-8600
1537-2715
language eng
recordid cdi_proquest_journals_2691151619
source Taylor and Francis Science and Technology Collection
subjects Algorithms
Computation
Extended skew-normal distribution
Folded normal distribution
Integrals
Mathematical analysis
Multivariate analysis
Normal distribution
Product moments
Skewed distributions
Truncated distributions
title On Moments of Folded and Doubly Truncated Multivariate Extended Skew-Normal Distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Moments%20of%20Folded%20and%20Doubly%20Truncated%20Multivariate%20Extended%20Skew-Normal%20Distributions&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Morales,%20Christian%20E.%20Galarza&rft.date=2022-04-03&rft.volume=31&rft.issue=2&rft.spage=455&rft.epage=465&rft.pages=455-465&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.2021.2000869&rft_dat=%3Cproquest_cross%3E2691151619%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-2a1c658682344a3b880277b0474c781e2222cb2e2188e941f584c36e628e286b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691151619&rft_id=info:pmid/&rfr_iscdi=true