Loading…

Information theoretical statistical discrimination measures for electronic densities

Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical chemistry 2022-08, Vol.60 (7), p.1422-1444
Main Authors: Laguna, Humberto G., Salazar, Saúl J. C., Sagar, Robin P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323
cites cdi_FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323
container_end_page 1444
container_issue 7
container_start_page 1422
container_title Journal of mathematical chemistry
container_volume 60
creator Laguna, Humberto G.
Salazar, Saúl J. C.
Sagar, Robin P.
description Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions which have been used in the STO- n G basis sets. The densities obtained from these procedures are compared and contrasted to those obtained from energy optimization, and from least-squares fitting to the wave function and to the density, by evaluation of density expectation values and comparisons to their exact values. We show how densities obtained from the optimization of Kullback–Leibler (KL) measures yield better results in general, as compared to the ones obtained from energy optimization or least-squares fitting procedures. Furthermore, these types of densities are observed to provide exact results in the case of two expectation values, for all the studied classes of functions. The densities obtained from optimization of the cumulative residual KL measures, based on survival densities, provide the most accurate tail behaviour of the densities and hence the most accurate higher-order moments.
doi_str_mv 10.1007/s10910-022-01363-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691505210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691505210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2c1ujlL8goKXeg5pMqsp7W7NpAf_vakrePOUITzPO8zL2LWAWwHQ3pEAI4CDlByE0orrEzYTTSt515n2lM1ANoab1ohzdkG0AQDT6W7GVi9DP6ady3EcqvyBY8IcvdtWlMsfTXOI5FPcxWHCdujokJCqYla4RZ_TOERfBRwo5oh0yc56tyW8-n3n7O3xYbV45svXp5fF_ZJ7WZvMjcFOCoem8XUQ_bpGg9rUIgQlGmh88I3uVN8H165lqFHXzq99DQpD0xsl1ZzdTLn7NH4ekLLdjIc0lJVWanPMkAIKJSfKp5EoYW_35RiXvqwAe2zPTu3Z0p79ac_qIqlJogIP75j-ov-xvgG1rXTS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691505210</pqid></control><display><type>article</type><title>Information theoretical statistical discrimination measures for electronic densities</title><source>Springer Link</source><creator>Laguna, Humberto G. ; Salazar, Saúl J. C. ; Sagar, Robin P.</creator><creatorcontrib>Laguna, Humberto G. ; Salazar, Saúl J. C. ; Sagar, Robin P.</creatorcontrib><description>Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions which have been used in the STO- n G basis sets. The densities obtained from these procedures are compared and contrasted to those obtained from energy optimization, and from least-squares fitting to the wave function and to the density, by evaluation of density expectation values and comparisons to their exact values. We show how densities obtained from the optimization of Kullback–Leibler (KL) measures yield better results in general, as compared to the ones obtained from energy optimization or least-squares fitting procedures. Furthermore, these types of densities are observed to provide exact results in the case of two expectation values, for all the studied classes of functions. The densities obtained from optimization of the cumulative residual KL measures, based on survival densities, provide the most accurate tail behaviour of the densities and hence the most accurate higher-order moments.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01363-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Density ; Hydrogen atoms ; Least squares ; Math. Applications in Chemistry ; Optimization ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry ; Wave functions</subject><ispartof>Journal of mathematical chemistry, 2022-08, Vol.60 (7), p.1422-1444</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323</citedby><cites>FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323</cites><orcidid>0000-0002-8088-7443 ; 0000-0002-2762-5321 ; 0000-0002-5565-1551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Laguna, Humberto G.</creatorcontrib><creatorcontrib>Salazar, Saúl J. C.</creatorcontrib><creatorcontrib>Sagar, Robin P.</creatorcontrib><title>Information theoretical statistical discrimination measures for electronic densities</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions which have been used in the STO- n G basis sets. The densities obtained from these procedures are compared and contrasted to those obtained from energy optimization, and from least-squares fitting to the wave function and to the density, by evaluation of density expectation values and comparisons to their exact values. We show how densities obtained from the optimization of Kullback–Leibler (KL) measures yield better results in general, as compared to the ones obtained from energy optimization or least-squares fitting procedures. Furthermore, these types of densities are observed to provide exact results in the case of two expectation values, for all the studied classes of functions. The densities obtained from optimization of the cumulative residual KL measures, based on survival densities, provide the most accurate tail behaviour of the densities and hence the most accurate higher-order moments.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density</subject><subject>Hydrogen atoms</subject><subject>Least squares</subject><subject>Math. Applications in Chemistry</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><subject>Wave functions</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2c1ujlL8goKXeg5pMqsp7W7NpAf_vakrePOUITzPO8zL2LWAWwHQ3pEAI4CDlByE0orrEzYTTSt515n2lM1ANoab1ohzdkG0AQDT6W7GVi9DP6ady3EcqvyBY8IcvdtWlMsfTXOI5FPcxWHCdujokJCqYla4RZ_TOERfBRwo5oh0yc56tyW8-n3n7O3xYbV45svXp5fF_ZJ7WZvMjcFOCoem8XUQ_bpGg9rUIgQlGmh88I3uVN8H165lqFHXzq99DQpD0xsl1ZzdTLn7NH4ekLLdjIc0lJVWanPMkAIKJSfKp5EoYW_35RiXvqwAe2zPTu3Z0p79ac_qIqlJogIP75j-ov-xvgG1rXTS</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Laguna, Humberto G.</creator><creator>Salazar, Saúl J. C.</creator><creator>Sagar, Robin P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8088-7443</orcidid><orcidid>https://orcid.org/0000-0002-2762-5321</orcidid><orcidid>https://orcid.org/0000-0002-5565-1551</orcidid></search><sort><creationdate>20220801</creationdate><title>Information theoretical statistical discrimination measures for electronic densities</title><author>Laguna, Humberto G. ; Salazar, Saúl J. C. ; Sagar, Robin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density</topic><topic>Hydrogen atoms</topic><topic>Least squares</topic><topic>Math. Applications in Chemistry</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laguna, Humberto G.</creatorcontrib><creatorcontrib>Salazar, Saúl J. C.</creatorcontrib><creatorcontrib>Sagar, Robin P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laguna, Humberto G.</au><au>Salazar, Saúl J. C.</au><au>Sagar, Robin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information theoretical statistical discrimination measures for electronic densities</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>60</volume><issue>7</issue><spage>1422</spage><epage>1444</epage><pages>1422-1444</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>Information theoretical measures are examined as methodologies for optimizing linear and non-linear parameters to obtain the best densities for particular classes of functions. We focus on the use of Gaussian type functions to represent the hydrogen atom, and examine combinations of these functions which have been used in the STO- n G basis sets. The densities obtained from these procedures are compared and contrasted to those obtained from energy optimization, and from least-squares fitting to the wave function and to the density, by evaluation of density expectation values and comparisons to their exact values. We show how densities obtained from the optimization of Kullback–Leibler (KL) measures yield better results in general, as compared to the ones obtained from energy optimization or least-squares fitting procedures. Furthermore, these types of densities are observed to provide exact results in the case of two expectation values, for all the studied classes of functions. The densities obtained from optimization of the cumulative residual KL measures, based on survival densities, provide the most accurate tail behaviour of the densities and hence the most accurate higher-order moments.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01363-6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8088-7443</orcidid><orcidid>https://orcid.org/0000-0002-2762-5321</orcidid><orcidid>https://orcid.org/0000-0002-5565-1551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2022-08, Vol.60 (7), p.1422-1444
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2691505210
source Springer Link
subjects Chemistry
Chemistry and Materials Science
Density
Hydrogen atoms
Least squares
Math. Applications in Chemistry
Optimization
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
Wave functions
title Information theoretical statistical discrimination measures for electronic densities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20theoretical%20statistical%20discrimination%20measures%20for%20electronic%20densities&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Laguna,%20Humberto%20G.&rft.date=2022-08-01&rft.volume=60&rft.issue=7&rft.spage=1422&rft.epage=1444&rft.pages=1422-1444&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01363-6&rft_dat=%3Cproquest_cross%3E2691505210%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-99e821ae95c4d1fb4e9e6941dd31505cdc5683ffda7b2d4e64acbc403ed5f9323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691505210&rft_id=info:pmid/&rfr_iscdi=true