Loading…

Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics

With dual goals of efficient and accurate modeling of solvation thermodynamics in molten salt liquids, we employ ab initio molecular dynamics (AIMD) simulations, deep neural network interatomic potentials (NNIP), and quasichemical theory (QCT) to calculate the excess chemical potentials for the solu...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2022-07, Vol.13 (28), p.8265-8273
Main Authors: Shi, Yu, Lam, Stephen T, Beck, Thomas L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With dual goals of efficient and accurate modeling of solvation thermodynamics in molten salt liquids, we employ ab initio molecular dynamics (AIMD) simulations, deep neural network interatomic potentials (NNIP), and quasichemical theory (QCT) to calculate the excess chemical potentials for the solute ions Na + and Cl − in the molten NaCl liquid. NNIP-based molecular dynamics simulations accelerate the calculations by 3 orders of magnitude and reduce the uncertainty to 1 kcal mol −1 . Using the Density Functional Theory (DFT) level of theory, the predicted excess chemical potential for the solute ion pair is −178.5 ± 1.1 kcal mol −1 . A quantum correction of 13.7 ± 1.9 kcal mol −1 is estimated via higher-level quantum chemistry calculations, leading to a final predicted ion pair excess chemical potential of −164.8 ± 2.2 kcal mol −1 . The result is in good agreement with a value of −163.5 kcal mol −1 obtained from thermo-chemical tables. This study validates the application of QCT and NNIP simulations to the molten salt liquids, allowing for significant insights into the solvation thermodynamics crucial for numerous molten salt applications. Solvation thermodynamics in molten salt is accurately and efficiently predicted by combining ab initio molecular dynamics (AIMD) simulations, deep neural network interatomic potentials (NNIP), and quasichemical theory (QCT).
ISSN:2041-6520
2041-6539
DOI:10.1039/d2sc02227c