Loading…

Medical Image Compression Based on Wavelets with Particle Swarm Optimization

This paper presents a novel method utilizing wavelets with particle swarm optimization (PSO) for medical image compression. Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding. It transfers images into subband details and approximati...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2021, Vol.67 (2), p.1577-1593
Main Authors: Alkinani, Monagi H, Zanaty, E A, Ibrahim, Sherif M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893
cites cdi_FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893
container_end_page 1593
container_issue 2
container_start_page 1577
container_title Computers, materials & continua
container_volume 67
creator Alkinani, Monagi H
Zanaty, E A
Ibrahim, Sherif M
description This paper presents a novel method utilizing wavelets with particle swarm optimization (PSO) for medical image compression. Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding. It transfers images into subband details and approximations using a modified Haar wavelet (MHW), and then applies a threshold. PSO is applied for selecting a particle assigned to the threshold values for the subbands. Nine positions assigned to particles values are used to represent population. Every particle updates its position depending on the global best position (gbest) (for all details subband) and local best position (pbest) (for a subband). The fitness value is developed to terminate PSO when the difference between two local best (pbest) successors is smaller than a prescribe value. The experiments are applied on five different medical image types, i.e., MRI, CT, and X-ray. Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio (PSNR) and compression ratio (CR) points of views.
doi_str_mv 10.32604/cmc.2021.014803
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2691782699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691782699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwM1piTvFHaicjRHxUCioSIEbrZF_AVdIE26WCX09KGVju3uF576SHkHPOZlIoll_azs4EE3zGeF4weUAmfJ6rTAihDv_lY3IS44oxqWTJJqR-QOcttHTRwRvSqu-GgDH6fk2vIaKjY3iFT2wxRbr16Z0-QkjetkifthA6uhyS7_w3pLFySo4aaCOe_e0pebm9ea7us3p5t6iu6sxKLlPmlAV0Nmc6V87pvJwrPVe8KASzTgAIcA0ruOa20VAiqhIcckBtR04XpZySi_3dIfQfG4zJrPpNWI8vjVAl18U4dxTbUzb0MQZszBB8B-HLcGZ-nZnRmdk5M3tn8gcfQl-C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691782699</pqid></control><display><type>article</type><title>Medical Image Compression Based on Wavelets with Particle Swarm Optimization</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Alkinani, Monagi H ; Zanaty, E A ; Ibrahim, Sherif M</creator><creatorcontrib>Alkinani, Monagi H ; Zanaty, E A ; Ibrahim, Sherif M</creatorcontrib><description>This paper presents a novel method utilizing wavelets with particle swarm optimization (PSO) for medical image compression. Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding. It transfers images into subband details and approximations using a modified Haar wavelet (MHW), and then applies a threshold. PSO is applied for selecting a particle assigned to the threshold values for the subbands. Nine positions assigned to particles values are used to represent population. Every particle updates its position depending on the global best position (gbest) (for all details subband) and local best position (pbest) (for a subband). The fitness value is developed to terminate PSO when the difference between two local best (pbest) successors is smaller than a prescribe value. The experiments are applied on five different medical image types, i.e., MRI, CT, and X-ray. Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio (PSNR) and compression ratio (CR) points of views.</description><identifier>ISSN: 1546-2226</identifier><identifier>ISSN: 1546-2218</identifier><identifier>EISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2021.014803</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Algorithms ; Approximation ; Compression ratio ; Computed tomography ; Computer science ; Image compression ; Medical imaging ; Optimization ; Particle swarm optimization ; Signal to noise ratio ; Wavelet transforms</subject><ispartof>Computers, materials &amp; continua, 2021, Vol.67 (2), p.1577-1593</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893</citedby><cites>FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2691782699?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alkinani, Monagi H</creatorcontrib><creatorcontrib>Zanaty, E A</creatorcontrib><creatorcontrib>Ibrahim, Sherif M</creatorcontrib><title>Medical Image Compression Based on Wavelets with Particle Swarm Optimization</title><title>Computers, materials &amp; continua</title><description>This paper presents a novel method utilizing wavelets with particle swarm optimization (PSO) for medical image compression. Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding. It transfers images into subband details and approximations using a modified Haar wavelet (MHW), and then applies a threshold. PSO is applied for selecting a particle assigned to the threshold values for the subbands. Nine positions assigned to particles values are used to represent population. Every particle updates its position depending on the global best position (gbest) (for all details subband) and local best position (pbest) (for a subband). The fitness value is developed to terminate PSO when the difference between two local best (pbest) successors is smaller than a prescribe value. The experiments are applied on five different medical image types, i.e., MRI, CT, and X-ray. Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio (PSNR) and compression ratio (CR) points of views.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Compression ratio</subject><subject>Computed tomography</subject><subject>Computer science</subject><subject>Image compression</subject><subject>Medical imaging</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Signal to noise ratio</subject><subject>Wavelet transforms</subject><issn>1546-2226</issn><issn>1546-2218</issn><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwM1piTvFHaicjRHxUCioSIEbrZF_AVdIE26WCX09KGVju3uF576SHkHPOZlIoll_azs4EE3zGeF4weUAmfJ6rTAihDv_lY3IS44oxqWTJJqR-QOcttHTRwRvSqu-GgDH6fk2vIaKjY3iFT2wxRbr16Z0-QkjetkifthA6uhyS7_w3pLFySo4aaCOe_e0pebm9ea7us3p5t6iu6sxKLlPmlAV0Nmc6V87pvJwrPVe8KASzTgAIcA0ruOa20VAiqhIcckBtR04XpZySi_3dIfQfG4zJrPpNWI8vjVAl18U4dxTbUzb0MQZszBB8B-HLcGZ-nZnRmdk5M3tn8gcfQl-C</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Alkinani, Monagi H</creator><creator>Zanaty, E A</creator><creator>Ibrahim, Sherif M</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>Medical Image Compression Based on Wavelets with Particle Swarm Optimization</title><author>Alkinani, Monagi H ; Zanaty, E A ; Ibrahim, Sherif M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Compression ratio</topic><topic>Computed tomography</topic><topic>Computer science</topic><topic>Image compression</topic><topic>Medical imaging</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Signal to noise ratio</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Alkinani, Monagi H</creatorcontrib><creatorcontrib>Zanaty, E A</creatorcontrib><creatorcontrib>Ibrahim, Sherif M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computers, materials &amp; continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkinani, Monagi H</au><au>Zanaty, E A</au><au>Ibrahim, Sherif M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Image Compression Based on Wavelets with Particle Swarm Optimization</atitle><jtitle>Computers, materials &amp; continua</jtitle><date>2021</date><risdate>2021</risdate><volume>67</volume><issue>2</issue><spage>1577</spage><epage>1593</epage><pages>1577-1593</pages><issn>1546-2226</issn><issn>1546-2218</issn><eissn>1546-2226</eissn><abstract>This paper presents a novel method utilizing wavelets with particle swarm optimization (PSO) for medical image compression. Our method utilizes PSO to overcome the wavelets discontinuity which occurs when compressing images using thresholding. It transfers images into subband details and approximations using a modified Haar wavelet (MHW), and then applies a threshold. PSO is applied for selecting a particle assigned to the threshold values for the subbands. Nine positions assigned to particles values are used to represent population. Every particle updates its position depending on the global best position (gbest) (for all details subband) and local best position (pbest) (for a subband). The fitness value is developed to terminate PSO when the difference between two local best (pbest) successors is smaller than a prescribe value. The experiments are applied on five different medical image types, i.e., MRI, CT, and X-ray. Results show that the proposed algorithm can be more preferably to compress medical images than other existing wavelets techniques from peak signal to noise ratio (PSNR) and compression ratio (CR) points of views.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmc.2021.014803</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1546-2226
ispartof Computers, materials & continua, 2021, Vol.67 (2), p.1577-1593
issn 1546-2226
1546-2218
1546-2226
language eng
recordid cdi_proquest_journals_2691782699
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Approximation
Compression ratio
Computed tomography
Computer science
Image compression
Medical imaging
Optimization
Particle swarm optimization
Signal to noise ratio
Wavelet transforms
title Medical Image Compression Based on Wavelets with Particle Swarm Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Image%20Compression%20Based%20on%20Wavelets%20with%20Particle%20Swarm%20Optimization&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Alkinani,%20Monagi%20H&rft.date=2021&rft.volume=67&rft.issue=2&rft.spage=1577&rft.epage=1593&rft.pages=1577-1593&rft.issn=1546-2226&rft.eissn=1546-2226&rft_id=info:doi/10.32604/cmc.2021.014803&rft_dat=%3Cproquest_cross%3E2691782699%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-d6caedc40746dd7495675618820cd2aa2adf08171cf7a9ee69ade1ae7c6757893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2691782699&rft_id=info:pmid/&rfr_iscdi=true