Loading…
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.73378-73387 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill this gap, this paper proposes Intelligent SDN Multi Spike Neural System (IMSNS) by implementing Moderately Multi-Spike Return Neural Networks (MMSRNN) controller with time based coding achieving remarkable reduction on energy consumption and accurate traffic identification to predict the most appropriate network slice. In addition, this paper proposes another intelligent Recurrent Neural Network (RNN) controller for load balancing and slice failure condition. The current researchers have adopted the: accuracy, precision, recall and F1-Score, the simulation results revealed that the proposed model could provide the accurate 5G network slicing as compared with a convolutional neural network (CNN) by 5%. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3189354 |