Loading…
Controlled quantum dot array segmentation via a highly tunable interdot tunnel coupling
Recent demonstrations using electron spins stored in quantum dots array as qubits are promising for developing a scalable quantum computing platform. An ongoing effort is therefore aiming at the precise control of the quantum dots parameters in larger and larger arrays which represents a complex cha...
Saved in:
Published in: | arXiv.org 2022-07 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent demonstrations using electron spins stored in quantum dots array as qubits are promising for developing a scalable quantum computing platform. An ongoing effort is therefore aiming at the precise control of the quantum dots parameters in larger and larger arrays which represents a complex challenge. Partitioning of the system with the help of the inter-dot tunnel barriers can lead to a simplification for tuning and offers a protection against unwanted charge displacement. In a triple quantum dot system, we demonstrate a nanosecond control of the inter-dot tunnel rate permitting to reach the two extreme regimes, large GHz tunnel coupling and sub-Hz isolation between adjacent dots. We use this novel development to isolate a sub part of the array while performing charge displacement and readout in the rest of the system. The degree of control over the tunnel coupling achieved in a unit cell should motivate future protocol development for tuning, manipulation and readout including this capability. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2207.09235 |