Loading…

Throughput and latency in the distributed Q-learning random access mMTC networks

In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algo...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787
Main Authors: Silva, Giovanni Maciel Ferreira, Abrão, Taufik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893
cites cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893
container_end_page
container_issue
container_start_page 108787
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 206
creator Silva, Giovanni Maciel Ferreira
Abrão, Taufik
description In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.
doi_str_mv 10.1016/j.comnet.2022.108787
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692279352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128622000214</els_id><sourcerecordid>2692279352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</originalsourceid><addsrcrecordid>eNp9kFtLwzAUx4MoOKffwIeAz51J2ubyIsjwBhMV5nNIk3RLXZuZpMq-vZH67NM5HP4Xzg-AS4wWGGF63S207webFgQRkk-ccXYEZpgzUjBExXHeSy4KTDg9BWcxdgihqiJ8Bl7X2-DHzXY_JqgGA3cq2UEfoBtg2lpoXEzBNWOyBr4VO6vC4IYNDFnqe6i0tjHC_nm9hLn-24ePeA5OWrWL9uJvzsH7_d16-VisXh6elrerQpdllQrDMSWMGMFqjgxjArdUCVyqpmkR16IxtBZK1YQyQzBusWCUUquQIVw3XJRzcDXl7oP_HG1MsvNjGHKlJFQQwkRZk6yqJpUOPsZgW7kPrlfhIDGSv-xkJyd28pednNhl281ks_mDL2eDjNplLta4YHWSxrv_A34A25t5GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692279352</pqid></control><display><type>article</type><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</creator><creatorcontrib>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</creatorcontrib><description>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2022.108787</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Latency ; Machine learning ; mMTC ; Network latency ; Packet transmission ; Q-learning (QL) ; Random access ; Throughput</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 7, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</citedby><cites>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</cites><orcidid>0000-0001-8678-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Silva, Giovanni Maciel Ferreira</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</description><subject>Algorithms</subject><subject>Latency</subject><subject>Machine learning</subject><subject>mMTC</subject><subject>Network latency</subject><subject>Packet transmission</subject><subject>Q-learning (QL)</subject><subject>Random access</subject><subject>Throughput</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kFtLwzAUx4MoOKffwIeAz51J2ubyIsjwBhMV5nNIk3RLXZuZpMq-vZH67NM5HP4Xzg-AS4wWGGF63S207webFgQRkk-ccXYEZpgzUjBExXHeSy4KTDg9BWcxdgihqiJ8Bl7X2-DHzXY_JqgGA3cq2UEfoBtg2lpoXEzBNWOyBr4VO6vC4IYNDFnqe6i0tjHC_nm9hLn-24ePeA5OWrWL9uJvzsH7_d16-VisXh6elrerQpdllQrDMSWMGMFqjgxjArdUCVyqpmkR16IxtBZK1YQyQzBusWCUUquQIVw3XJRzcDXl7oP_HG1MsvNjGHKlJFQQwkRZk6yqJpUOPsZgW7kPrlfhIDGSv-xkJyd28pednNhl281ks_mDL2eDjNplLta4YHWSxrv_A34A25t5GA</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Silva, Giovanni Maciel Ferreira</creator><creator>Abrão, Taufik</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8678-2805</orcidid></search><sort><creationdate>20220407</creationdate><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><author>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Latency</topic><topic>Machine learning</topic><topic>mMTC</topic><topic>Network latency</topic><topic>Packet transmission</topic><topic>Q-learning (QL)</topic><topic>Random access</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Giovanni Maciel Ferreira</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Giovanni Maciel Ferreira</au><au>Abrão, Taufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput and latency in the distributed Q-learning random access mMTC networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2022-04-07</date><risdate>2022</risdate><volume>206</volume><spage>108787</spage><pages>108787-</pages><artnum>108787</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2022.108787</doi><orcidid>https://orcid.org/0000-0001-8678-2805</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2692279352
source Library & Information Science Abstracts (LISA); Elsevier
subjects Algorithms
Latency
Machine learning
mMTC
Network latency
Packet transmission
Q-learning (QL)
Random access
Throughput
title Throughput and latency in the distributed Q-learning random access mMTC networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20and%20latency%20in%20the%20distributed%20Q-learning%20random%20access%20mMTC%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Silva,%20Giovanni%20Maciel%20Ferreira&rft.date=2022-04-07&rft.volume=206&rft.spage=108787&rft.pages=108787-&rft.artnum=108787&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2022.108787&rft_dat=%3Cproquest_cross%3E2692279352%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692279352&rft_id=info:pmid/&rfr_iscdi=true