Loading…
Throughput and latency in the distributed Q-learning random access mMTC networks
In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algo...
Saved in:
Published in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893 |
container_end_page | |
container_issue | |
container_start_page | 108787 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 206 |
creator | Silva, Giovanni Maciel Ferreira Abrão, Taufik |
description | In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput. |
doi_str_mv | 10.1016/j.comnet.2022.108787 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692279352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128622000214</els_id><sourcerecordid>2692279352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</originalsourceid><addsrcrecordid>eNp9kFtLwzAUx4MoOKffwIeAz51J2ubyIsjwBhMV5nNIk3RLXZuZpMq-vZH67NM5HP4Xzg-AS4wWGGF63S207webFgQRkk-ccXYEZpgzUjBExXHeSy4KTDg9BWcxdgihqiJ8Bl7X2-DHzXY_JqgGA3cq2UEfoBtg2lpoXEzBNWOyBr4VO6vC4IYNDFnqe6i0tjHC_nm9hLn-24ePeA5OWrWL9uJvzsH7_d16-VisXh6elrerQpdllQrDMSWMGMFqjgxjArdUCVyqpmkR16IxtBZK1YQyQzBusWCUUquQIVw3XJRzcDXl7oP_HG1MsvNjGHKlJFQQwkRZk6yqJpUOPsZgW7kPrlfhIDGSv-xkJyd28pednNhl281ks_mDL2eDjNplLta4YHWSxrv_A34A25t5GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692279352</pqid></control><display><type>article</type><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><source>Library & Information Science Abstracts (LISA)</source><source>Elsevier</source><creator>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</creator><creatorcontrib>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</creatorcontrib><description>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2022.108787</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Latency ; Machine learning ; mMTC ; Network latency ; Packet transmission ; Q-learning (QL) ; Random access ; Throughput</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Apr 7, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</citedby><cites>FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</cites><orcidid>0000-0001-8678-2805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135</link.rule.ids></links><search><creatorcontrib>Silva, Giovanni Maciel Ferreira</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</description><subject>Algorithms</subject><subject>Latency</subject><subject>Machine learning</subject><subject>mMTC</subject><subject>Network latency</subject><subject>Packet transmission</subject><subject>Q-learning (QL)</subject><subject>Random access</subject><subject>Throughput</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kFtLwzAUx4MoOKffwIeAz51J2ubyIsjwBhMV5nNIk3RLXZuZpMq-vZH67NM5HP4Xzg-AS4wWGGF63S207webFgQRkk-ccXYEZpgzUjBExXHeSy4KTDg9BWcxdgihqiJ8Bl7X2-DHzXY_JqgGA3cq2UEfoBtg2lpoXEzBNWOyBr4VO6vC4IYNDFnqe6i0tjHC_nm9hLn-24ePeA5OWrWL9uJvzsH7_d16-VisXh6elrerQpdllQrDMSWMGMFqjgxjArdUCVyqpmkR16IxtBZK1YQyQzBusWCUUquQIVw3XJRzcDXl7oP_HG1MsvNjGHKlJFQQwkRZk6yqJpUOPsZgW7kPrlfhIDGSv-xkJyd28pednNhl281ks_mDL2eDjNplLta4YHWSxrv_A34A25t5GA</recordid><startdate>20220407</startdate><enddate>20220407</enddate><creator>Silva, Giovanni Maciel Ferreira</creator><creator>Abrão, Taufik</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8678-2805</orcidid></search><sort><creationdate>20220407</creationdate><title>Throughput and latency in the distributed Q-learning random access mMTC networks</title><author>Silva, Giovanni Maciel Ferreira ; Abrão, Taufik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Latency</topic><topic>Machine learning</topic><topic>mMTC</topic><topic>Network latency</topic><topic>Packet transmission</topic><topic>Q-learning (QL)</topic><topic>Random access</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Giovanni Maciel Ferreira</creatorcontrib><creatorcontrib>Abrão, Taufik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Giovanni Maciel Ferreira</au><au>Abrão, Taufik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Throughput and latency in the distributed Q-learning random access mMTC networks</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2022-04-07</date><risdate>2022</risdate><volume>206</volume><spage>108787</spage><pages>108787-</pages><artnum>108787</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>In mMTC mode, where thousands of devices try to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources arise. A promising approach to solve the RA problem is the use of learning mechanisms, specially Q-learning (QL) algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method of varying the reward given by the central node that favors devices having a larger number of remaining packets to transmit. The numerical results indicated that the proposed distributed packet-based QL method attains a better throughput–latency trade-off than the independent and collaborative techniques in practical scenarios, while the number of payload bits of the packet-based technique is reduced regarding the collaborative QL RA technique for achieving the same normalized throughput.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2022.108787</doi><orcidid>https://orcid.org/0000-0001-8678-2805</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2022-04, Vol.206, p.108787, Article 108787 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_2692279352 |
source | Library & Information Science Abstracts (LISA); Elsevier |
subjects | Algorithms Latency Machine learning mMTC Network latency Packet transmission Q-learning (QL) Random access Throughput |
title | Throughput and latency in the distributed Q-learning random access mMTC networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Throughput%20and%20latency%20in%20the%20distributed%20Q-learning%20random%20access%20mMTC%20networks&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Silva,%20Giovanni%20Maciel%20Ferreira&rft.date=2022-04-07&rft.volume=206&rft.spage=108787&rft.pages=108787-&rft.artnum=108787&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2022.108787&rft_dat=%3Cproquest_cross%3E2692279352%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-d816272d97580d7791f6a913abbf08c9bd659aa5267d211f197666ea0d28cb893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692279352&rft_id=info:pmid/&rfr_iscdi=true |