Loading…
An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks
The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they deter...
Saved in:
Published in: | Webology 2022-01, Vol.19 (1), p.3119-3129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3129 |
container_issue | 1 |
container_start_page | 3119 |
container_title | Webology |
container_volume | 19 |
creator | Reddi, Surya Prakasa Rao T.V., Madhusudhana Rao P., Srinivasa Rao Bethapudi, Prakash |
description | The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ & BRISQUE. |
doi_str_mv | 10.14704/WEB/V19I1/WEB19206 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692792641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692792641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53</originalsourceid><addsrcrecordid>eNpNkE9PAjEUxBujiYh-Ai9NPK_037bbIxJAEtSDoh5MmtK-lQXcxXbB4Kd3AU08zWQy703yQ-iSkmsqFBGdl_5N55nqEd05qhmRR6hFFU8TmmWvx__8KTqLcU6IEIyQFnrrlrif54UroKzxHdSzyuO8CnhgXWGX-HEBtZtBxI_bsm60-LZ1UZV4EovyHQ-hhNAEG8Bdv4EQbdgd3UP9VYVFPEcnuV1GuPjVNpoM-k-922T8MBz1uuPEUapkAkr6qbb5lIhpqjQ4JpgX1muvnLBcS845k4RRaTlJucq8BZaBc7lWwGzK2-jq8HcVqs81xNrMq3Uom0nDpGZKMylo0-KHlgtVjAFyswrFhw1bQ4nZYzQNPLPHaP4w8h_sjmcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692792641</pqid></control><display><type>article</type><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><source>Library & Information Science Abstracts (LISA)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library & Information Science Collection</source><creator>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</creator><creatorcontrib>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</creatorcontrib><description>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ & BRISQUE.</description><identifier>ISSN: 1735-188X</identifier><identifier>EISSN: 1735-188X</identifier><identifier>DOI: 10.14704/WEB/V19I1/WEB19206</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Artists ; Automation ; Datasets ; Deep learning ; Image retrieval ; Law enforcement ; Methods</subject><ispartof>Webology, 2022-01, Vol.19 (1), p.3119-3129</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2692792641/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2692792641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21380,21393,27304,27923,27924,33610,33905,34134,43732,43891,73992,74180</link.rule.ids></links><search><creatorcontrib>Reddi, Surya Prakasa Rao</creatorcontrib><creatorcontrib>T.V., Madhusudhana Rao</creatorcontrib><creatorcontrib>P., Srinivasa Rao</creatorcontrib><creatorcontrib>Bethapudi, Prakash</creatorcontrib><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><title>Webology</title><description>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ & BRISQUE.</description><subject>Artists</subject><subject>Automation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image retrieval</subject><subject>Law enforcement</subject><subject>Methods</subject><issn>1735-188X</issn><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M1O</sourceid><recordid>eNpNkE9PAjEUxBujiYh-Ai9NPK_037bbIxJAEtSDoh5MmtK-lQXcxXbB4Kd3AU08zWQy703yQ-iSkmsqFBGdl_5N55nqEd05qhmRR6hFFU8TmmWvx__8KTqLcU6IEIyQFnrrlrif54UroKzxHdSzyuO8CnhgXWGX-HEBtZtBxI_bsm60-LZ1UZV4EovyHQ-hhNAEG8Bdv4EQbdgd3UP9VYVFPEcnuV1GuPjVNpoM-k-922T8MBz1uuPEUapkAkr6qbb5lIhpqjQ4JpgX1muvnLBcS845k4RRaTlJucq8BZaBc7lWwGzK2-jq8HcVqs81xNrMq3Uom0nDpGZKMylo0-KHlgtVjAFyswrFhw1bQ4nZYzQNPLPHaP4w8h_sjmcY</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Reddi, Surya Prakasa Rao</creator><creator>T.V., Madhusudhana Rao</creator><creator>P., Srinivasa Rao</creator><creator>Bethapudi, Prakash</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220120</creationdate><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><author>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artists</topic><topic>Automation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image retrieval</topic><topic>Law enforcement</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddi, Surya Prakasa Rao</creatorcontrib><creatorcontrib>T.V., Madhusudhana Rao</creatorcontrib><creatorcontrib>P., Srinivasa Rao</creatorcontrib><creatorcontrib>Bethapudi, Prakash</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddi, Surya Prakasa Rao</au><au>T.V., Madhusudhana Rao</au><au>P., Srinivasa Rao</au><au>Bethapudi, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</atitle><jtitle>Webology</jtitle><date>2022-01-20</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>3119</spage><epage>3129</epage><pages>3119-3129</pages><issn>1735-188X</issn><eissn>1735-188X</eissn><abstract>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ & BRISQUE.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub><doi>10.14704/WEB/V19I1/WEB19206</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-188X |
ispartof | Webology, 2022-01, Vol.19 (1), p.3119-3129 |
issn | 1735-188X 1735-188X |
language | eng |
recordid | cdi_proquest_journals_2692792641 |
source | Library & Information Science Abstracts (LISA); Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection |
subjects | Artists Automation Datasets Deep learning Image retrieval Law enforcement Methods |
title | An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Method%20for%20Facial%20Sketches%20Synthesization%20Using%20Generative%20Adversarial%20Networks&rft.jtitle=Webology&rft.au=Reddi,%20Surya%20Prakasa%20Rao&rft.date=2022-01-20&rft.volume=19&rft.issue=1&rft.spage=3119&rft.epage=3129&rft.pages=3119-3129&rft.issn=1735-188X&rft.eissn=1735-188X&rft_id=info:doi/10.14704/WEB/V19I1/WEB19206&rft_dat=%3Cproquest_cross%3E2692792641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692792641&rft_id=info:pmid/&rfr_iscdi=true |