Loading…

An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks

The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they deter...

Full description

Saved in:
Bibliographic Details
Published in:Webology 2022-01, Vol.19 (1), p.3119-3129
Main Authors: Reddi, Surya Prakasa Rao, T.V., Madhusudhana Rao, P., Srinivasa Rao, Bethapudi, Prakash
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3129
container_issue 1
container_start_page 3119
container_title Webology
container_volume 19
creator Reddi, Surya Prakasa Rao
T.V., Madhusudhana Rao
P., Srinivasa Rao
Bethapudi, Prakash
description The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ & BRISQUE.
doi_str_mv 10.14704/WEB/V19I1/WEB19206
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2692792641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2692792641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53</originalsourceid><addsrcrecordid>eNpNkE9PAjEUxBujiYh-Ai9NPK_037bbIxJAEtSDoh5MmtK-lQXcxXbB4Kd3AU08zWQy703yQ-iSkmsqFBGdl_5N55nqEd05qhmRR6hFFU8TmmWvx__8KTqLcU6IEIyQFnrrlrif54UroKzxHdSzyuO8CnhgXWGX-HEBtZtBxI_bsm60-LZ1UZV4EovyHQ-hhNAEG8Bdv4EQbdgd3UP9VYVFPEcnuV1GuPjVNpoM-k-922T8MBz1uuPEUapkAkr6qbb5lIhpqjQ4JpgX1muvnLBcS845k4RRaTlJucq8BZaBc7lWwGzK2-jq8HcVqs81xNrMq3Uom0nDpGZKMylo0-KHlgtVjAFyswrFhw1bQ4nZYzQNPLPHaP4w8h_sjmcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692792641</pqid></control><display><type>article</type><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library &amp; Information Science Collection</source><creator>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</creator><creatorcontrib>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</creatorcontrib><description>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ &amp; BRISQUE.</description><identifier>ISSN: 1735-188X</identifier><identifier>EISSN: 1735-188X</identifier><identifier>DOI: 10.14704/WEB/V19I1/WEB19206</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Artists ; Automation ; Datasets ; Deep learning ; Image retrieval ; Law enforcement ; Methods</subject><ispartof>Webology, 2022-01, Vol.19 (1), p.3119-3129</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2692792641/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2692792641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21380,21393,27304,27923,27924,33610,33905,34134,43732,43891,73992,74180</link.rule.ids></links><search><creatorcontrib>Reddi, Surya Prakasa Rao</creatorcontrib><creatorcontrib>T.V., Madhusudhana Rao</creatorcontrib><creatorcontrib>P., Srinivasa Rao</creatorcontrib><creatorcontrib>Bethapudi, Prakash</creatorcontrib><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><title>Webology</title><description>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ &amp; BRISQUE.</description><subject>Artists</subject><subject>Automation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image retrieval</subject><subject>Law enforcement</subject><subject>Methods</subject><issn>1735-188X</issn><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M1O</sourceid><recordid>eNpNkE9PAjEUxBujiYh-Ai9NPK_037bbIxJAEtSDoh5MmtK-lQXcxXbB4Kd3AU08zWQy703yQ-iSkmsqFBGdl_5N55nqEd05qhmRR6hFFU8TmmWvx__8KTqLcU6IEIyQFnrrlrif54UroKzxHdSzyuO8CnhgXWGX-HEBtZtBxI_bsm60-LZ1UZV4EovyHQ-hhNAEG8Bdv4EQbdgd3UP9VYVFPEcnuV1GuPjVNpoM-k-922T8MBz1uuPEUapkAkr6qbb5lIhpqjQ4JpgX1muvnLBcS845k4RRaTlJucq8BZaBc7lWwGzK2-jq8HcVqs81xNrMq3Uom0nDpGZKMylo0-KHlgtVjAFyswrFhw1bQ4nZYzQNPLPHaP4w8h_sjmcY</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Reddi, Surya Prakasa Rao</creator><creator>T.V., Madhusudhana Rao</creator><creator>P., Srinivasa Rao</creator><creator>Bethapudi, Prakash</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220120</creationdate><title>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</title><author>Reddi, Surya Prakasa Rao ; T.V., Madhusudhana Rao ; P., Srinivasa Rao ; Bethapudi, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artists</topic><topic>Automation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image retrieval</topic><topic>Law enforcement</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddi, Surya Prakasa Rao</creatorcontrib><creatorcontrib>T.V., Madhusudhana Rao</creatorcontrib><creatorcontrib>P., Srinivasa Rao</creatorcontrib><creatorcontrib>Bethapudi, Prakash</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddi, Surya Prakasa Rao</au><au>T.V., Madhusudhana Rao</au><au>P., Srinivasa Rao</au><au>Bethapudi, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks</atitle><jtitle>Webology</jtitle><date>2022-01-20</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>3119</spage><epage>3129</epage><pages>3119-3129</pages><issn>1735-188X</issn><eissn>1735-188X</eissn><abstract>The synthesis of facial sketches is an important technique in digital entertainment and law enforcement agencies. Recent advancements in deep learning have shown its possibility in generating images/sketches using attribute guided features. Facial features are important attributes because they determine human faces' detailed description and appearance during sketch generation. Traditionally, the forensic or composite artist has to sketch by interviewing witnesses manually. To automate this process of face sketch generation, a deep learning-based generative adversarial network incorporated with multiple activation functions is proposed for its efficiency improvement. The proposed model is extensively tested using different evaluation metrics such as RMSE, PSNR, SSIM, SRE, SAM, UIQ &amp; BRISQUE.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub><doi>10.14704/WEB/V19I1/WEB19206</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-188X
ispartof Webology, 2022-01, Vol.19 (1), p.3119-3129
issn 1735-188X
1735-188X
language eng
recordid cdi_proquest_journals_2692792641
source Library & Information Science Abstracts (LISA); Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection
subjects Artists
Automation
Datasets
Deep learning
Image retrieval
Law enforcement
Methods
title An Efficient Method for Facial Sketches Synthesization Using Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Method%20for%20Facial%20Sketches%20Synthesization%20Using%20Generative%20Adversarial%20Networks&rft.jtitle=Webology&rft.au=Reddi,%20Surya%20Prakasa%20Rao&rft.date=2022-01-20&rft.volume=19&rft.issue=1&rft.spage=3119&rft.epage=3129&rft.pages=3119-3129&rft.issn=1735-188X&rft.eissn=1735-188X&rft_id=info:doi/10.14704/WEB/V19I1/WEB19206&rft_dat=%3Cproquest_cross%3E2692792641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1176-e76db9afb04b579ec242d4ad9d7c4a396333260216a305378dae28eccf97e2a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2692792641&rft_id=info:pmid/&rfr_iscdi=true